Entrades classificades amb: CCU

Desarrollo de una aplicación web basada en el módulo ZI_GTC

En este post se trata el proceso de creación de una aplicación web que está basada en el módulo “Càlcul de Zona d’Influència (Graf de Trams de Carrer)” (ZI_GTC) para QGIS. El trabajo realizado por Ignasi Argemí Puig y Josep López Xarbau en la adaptación web del módulo CTE ha servido como base teórico-práctica para el desarrollo de la nueva aplicación. Para obtener más información sobre esta otra aplicación se puede consultar el post “Desenvolupament d’un mòdul en un entorn web”.

Debido a que con el módulo CTE se había conseguido un resultado satisfactorio, el equipo del CCU decidió utilizarlo como punto de partida para poder desarrollar nuevos plugins cuya funcionalidad fuese relativamente fácil de portear al entorno web.

El objetivo del ZI_GTC es calcular la zona de influencia (en distancia o en tiempo) de las entidades que el usuario desee con una dispersión que se adapta a la forma del grafo que conforman todas las calles Mataró.

Estructura interna

La estructura del programa y el diagrama de flujo de la transmisión de información es exactamente igual a la del CTE (Fig 1).

Fig 1. Diagrama de flujo de la transmisión de información (Fuente: Ignasi Argemí Puig)

En el front-end estarán el HTML y CSS, los cuales se encargan de la estructura y el estilo de la página web; mientras que el funcionamiento interno de la página en el cliente estará gestionado por Javascript y AJAX que, además, serán los encargados de realizar las peticiones al servidor web cuando sea necesario.

En el back-end está el servidor web en el cual se almacena la página web y que se comunica con un PHP que se conecta con el servidor de datos de Postgres en el cual está la base de datos del CCU. Finalmente, para poder devolver el resultado al front-end se utiliza un formato de intercambio de datos que deriva JSON: GeoJSON.

Desarrollo

Se comenzó a trabajar sobre una copia de la aplicación del CTE y lo primero que se hizo fue modificar el HTML para dotarlo de los campos necesarios que necesitaba el ZI_GTC (Fig 2) e ir empezando a hacer pruebas conceptuales. Se tuvo en cuenta el diseño de la interface del CTE para que hubiera una coherencia estética entre ellos.

Fig 2. Apariencia del formulario de la aplicación

Se optó por hacer una versión reducida del plugin de QGIS (Fig 3). Una de las funcionalidades importantes que se ha decidido omitir es la que implica el método de trabajo con la población. Esta decisión tiene que ver con la complicación que supondría tener que pedirle al usuario una “Taula Resum”, las cuales a día de hoy sólo se generan en QGIS.

Fig 3. Módulo ZI_GTC de QGIS

El siguiente paso fue adaptar el Javascript a la nueva funcionalidad, es decir, se introdujo la gestión de la información (enviada y recibida) y la lógica interna de la selección de un coste u otro para después poder lanzarle la información a PHP. En un primer momento quedó pendiente resolver la recepción del GeoJSON ya que no se tenía muy claro cómo se llevaría a cabo en el caso de este plugin.

Finalmente se tradujo la funcionalidad básica del módulo de QGIS a PHP, el cual estaba escrito en Python. La mayor parte del trabajo estaba hecho ya que el módulo ZI_GTC trabaja realizando operaciones sobre el servidor. Sin embargo, puesto que no se tenían conocimientos previos de PHP, esta parte supuso un reto debido a determinados cambios de sintaxis, del planteamineto y la dificultad añadida que supone debugar en PHP. Fue necesario modificar varias consultas SQL y hacer un procedimiento específico para poder enviarle el GeoJSON de vuelta al Javascript. El siguiente paso fue volver a editar el Javascript para interpretar el GeoJSON y representarlo el resultado en pantalla.

Fig 4. Ejemplo de resultado del ZI_GTC web tras calcular el área de influencia de 150m de los IES de Mataró

Llegados a este punto la aplicación estaba prácticamente terminada. En un primer momento el resultado mostrado en pantalla no tenía la forma deseada a pesar de mostrar las zonas correctas. Este error (fundamentalmente visual) se debía a una consulta SQL que fue necesario localizar y modificar.

Para terminar, se añadieron marcadores a cada una de las zonas para que el usuario pudiera consultar su nombre con un simple click (Fig 5).

Fig 5. Ejemplo de resultado del ZI_GTC web, mostrando el nombre de una entidad.

Publicación

La aplicación ya se encuentra disponible en Internet. Se puede probar en http://geoportalccu.tecnocampus.cat/ZI_GTC/ZI_GTC.html, preferiblemente utilizando Google Chrome o Mozilla Firefox.

Implementación de las funcionalidades QGIS3 para realizar el cálculo local en el módulo CTE

En este post se mostrará el proceso de implementación de las nuevas funcionalidades que trae consigo la versión 3 de QGIS, las cuales permiten realizar operaciones complejas ejecutando simplemente un algoritmo. En este caso, se tomará como ejemplo el módulo CTE. Este módulo permite obtener los trayectos o caminos entre una dirección de Mataró y las N entidades más próximas.

Utilización manual de los algoritmos

En primer lugar, se debe habilitar el paquete de “Processing” en el caso de que no esté activado. Para ello se deberá ir a “Complementos” -> “Administrar e instalar complementos…” (Fig. 1).

Fig 1. Habilitar paquete “Processing”.

Tras haberlo habilitado aparecerá una nueva pestaña llamada “Procesos”, en la cual se deberá seleccionar “Caja de herramientas” para que se muestren en pantalla todos los algoritmos disponibles. Dicho elemento aparecerá en una barra lateral dentro de QGIS.

A continuación se debe probar si el algoritmo que se utilizará genera el resultado deseado. En el caso del CTE, el algoritmo que potencialmente puede interesarnos es el denominado “Ruta más corta (punto a capa)”, el cual se encuentra en la sección de análisis de redes (Fig. 2).

Fig 2. Caja de herramientas de procesos.

Dicho algoritmo necesita la capa vectorial que representa la red (en nuestro caso SegmentsXarxaCarrers), un punto de inicio y una capa vectorial con los puntos finales. Para realizar las pruebas se utilizarán (de forma totalmente arbitraria) un punto cualquiera del mapa de Mataró como punto de inicio y los IES como puntos finales. Por tanto, se deberán cargar en QGIS tanto SegmentsXarxaCarrers como los IES (Fig. 3).

Fig 3. Importación de los IES y SegmentsXarxaCarrers.

Abrimos el algoritmo, seleccionamos nuestra red, punto de inicio, puntos finales y el resto de los valores los dejaremos por defecto (Fig. 4). Acto seguido, ejecutamos.

Fig 4. Algoritmo “Ruta más corta (punto a capa)”.

Una vez haya finalizado la ejecución el algoritmo, se añadirá automáticamente el resultado a la leyenda (Fig. 5). Desde el punto arbitrario que se ha escogido en este caso particular el resultado sería el siguiente, en el cual se puede apreciar que produce el resultado deseado (buscar la ruta más corta a cada entidad).

Fig 5. Resultado del algoritmo (rutas más cortas).

Inclusión de los algoritmos en el código

Para poder utilizar los algoritmos proporcionados por QGIS e incluirlos en el módulo, será necesario realizar un “import processing” en el código para poder ejecutar la función “processing.run()”, la cual se encargará de ejecutar el algoritmo deseado. Dentro de esta función se le deberá indicar el ID del algoritmo que se vaya a utilizar y los parámetros que se le pasarán.

Para saber cuál es el ID del algoritmo, simplemente con poner el cursor sobre él nos aparecerá su nombre (Fig. 6).

Fig 6. ID del algoritmo.

Por otra parte, para saber qué tipos admite cada uno de los parámetros (y más información sobre el funcionamiento general del algoritmo) podemos usar la consola de QGIS e introducir el comando “processing.algorithmHelp(“native:shortestpathpointtolayer”)”.

En este módulo se ha querido preservar el cálculo que se realiza en el servidor mediante consultas SQL. Para poder mantener ambas opciones se ha optado simplemente por añadir un checkbox el cual propiciará que el módulo se ejecute en local si se ha marcado y, contrariamente, se ejecutará en el servidor cuando esté desmarcado (Fig. 7).

Fig 7. Checkbox de cálculo local en el módulo CTE.

Por tanto, en el código del módulo se ha escrito la siguiente función, la cual se encarga de ejecutar el algoritmo.

def calculo_Local(self,network_lyr,start_point,end_lyr):
    parameters={'INPUT':network_lyr,
                'STRATEGY':0,
                'DIRECTION_FIELD:'',
                'VALUE_FORWARD:'',
                'VALUE_BACKWARD:'',
                'VALUE_BOTH:'',
                'DEFAULT_DIRECTION':2,
                'SPEED_FIELD':'',
                'DEFAULT_SPEED':1,
                'TOLERANCE':0,
                'START_POINT':start_point,
                'END_POINTS':end_layer,
                'OUTPUT':'memory:'}
    return.processing.run('native:shortestpathpointtolayer',parameters)

A esta función se le pasan los siguientes parámetros:

  • network_lyr: es la capa vectorial que representa la red.
  • start_point: es el punto de inicio elegido por el usuario, es decir, la dirección que haya introducido.
  • end_lyr: es la capa vectorial que representa los puntos finales, es decir, las entidades que haya elegido el usuario.

El resto de parámetros son los que anteriormente se usaban por defecto y, teniendo en cuenta el uso que tiene este algoritmo en el módulo, nos interesa que sean esos valores fijos.

En el módulo CTE lo que se busca es mostrarle al usuario los N caminos más cortos, siendo N un número definido por el propio usuario. El algoritmo genera las rutas más cortas de todas las entidades por lo que, tras haber utilizado el algoritmo, se deberá realizar un filtrado de los caminos que tengan un menor coste según el número de entidades establecido por el usuario.

A partir de este punto, se representará el resultado utilizando el mismo código empleado cuando se realiza el cálculo en el servidor.

Cálculo por distancia/tiempo

El algoritmo utilizado, “Ruta más corta (punto a capa)”, puede funcionar definiendo el coste por distancia o por tiempo. Para realizar el cálculo utilizando la distancia lo que hará es comparar la longitud de los segmentos, mientras que por tiempo tomará el valor que le indiquemos de un campo en concreto o bien asignará una velocidad predeterminada.

En el caso del módulo CTE no representa ningún problema realizar el cálculo por distancia. Sin embargo, si se quisiera hacer el cálculo por tiempo, en la base de datos está definido un coste distinto dependiendo del sentido debido a que no se tarda el mismo tiempo en subir una pendiente que en bajarla. Desafortunadamente, este algoritmo está pensado para asignar una única velocidad para cada segmento sin tener en cuenta el sentido. Por tanto, todo lo que se ha descrito previamente sólo sirve para el caso de la distancia ya que en la actualidad este algoritmo no soporta esta dualidad de velocidades.

Diferencias rendimiento (ventajas/inconvenientes)

Las diferencias de rendimiento entre el cálculo en el servidor y la nueva opción de cálculo local varían en función de lo concurrido que esté el servidor en ese momento y del ordenador del cliente.

A continuación se muestra el tiempo que ha tardado el módulo en calcular cada uno de los destinos en servidor y local en unas pruebas de testeo.

Fig 8. Resultados del testeo. Eje X: puntos finales. Eje Y: tiempo de ejecución.

Tal y como se puede apreciar en el gráfico (Fig. 8), en el caso del cálculo en el servidor el tiempo de proceso aumenta de forma proporcional a la cantidad de entidades de destino que tiene que calcular. Por otra parte, el tiempo que tarda el cálculo local es sumamente sólido, siendo prácticamente una constante. Se tarda el mismo tiempo en calcular 4 destinos (CasalsAvisOficial) que 144 (ParadesBus).

Debido a que el cálculo local presenta una duración más estable, que de media tarda 5 segundos (mientras que el cálculo en el servidor tarda de media 7,9 segundos) y que libera carga en el servidor, esta nueva forma de realizar los cálculos representa una mejora en el módulo CTE y, por norma general, al usuario le interesará ejecutar este módulo marcando el cálculo local.

 

Cálculo en el servidor de los caminos más cortos en el módulo CTE

En este post se explicará cómo se realiza el cálculo en el servidor en el módulo CTE, el cual permite obtener los trayectos o caminos entre una dirección de Mataró y las N entidades más próximas.

Este cálculo se divide en 2 fases: cálculo de los caminos más cortos y la selección de los segmentos finales. Esto es debido a que la función pgr_withPointsKSP  (la cual se utiliza para calcular los caminos más cortos) tiene asociado el problema de que devuelve los caminos del grafo de nodo a nodo, no teniendo en cuenta que en la mayor parte de los casos tanto el punto de inicio como los finales estarán situados en un punto intermedio de un segmento (una arista). Para obtener más información sobre este tema se puede consultar el post “Cobertura mitjançant el graf de trams de carrers (GTC)” de Josep López Xarbau.

Cálculo de los caminos más cortos

En esta primera fase se utiliza la función de PGRouting, pgr_withPointsKSP. Esta función busca los N caminos más cortos utilizando el algoritmo de Yen.

Todo el código que se presentará a continuación pertenece al módulo CTE, el cual está programado en Python y se comunica con la base de datos de Postgres.

En primer lugar lo que nos interesa realizar es unir todos los puntos involucrados (tanto los de destino como el de origen) en una misma tabla para poder prepararlos para la función pgr_withPointsKSP.

De este modo, primero se borra y se crea una nueva tabla para guardar dichos puntos.

drop = 'DROP TABLE IF EXISTS NecessaryPoints_'+Fitxer+';'
try:
    cur.execute(drop)
    conn.commit()
except:
    print ("DROP TABLE ERROR 1")
create = 'CREATE TABLE NecessaryPoints_'+Fitxer+' (\n'
create += "\tpid serial primary key,\n"
create += "\tthe_geom geometry,\n"
create += "\tentitatID int8,\n"
create += "\tedge_id BIGINT,\n"
create += "\tfraction FLOAT,\n"
create += "\tnewPoint geometry);"
try:
    cur.execute(create)
    conn.commit()
except:
    print ("CREATE TABLE NecessaryPoints ERROR")

Acto seguido, se añaden los puntos a la tabla.

insert = 'INSERT INTO NecessaryPoints_'+Fitxer
insert += ' (entitatID,the_geom) (SELECT 0, ST_Centroid("geom") the_geom from "dintreilla"'
insert += ' WHERE "Carrer_Num_Bis" = \''+CNB+'\');\n'

insert += 'INSERT INTO NecessaryPoints_'+Fitxer
insert += ' (entitatID, the_geom) (SELECT "id", ST_Centroid("geom") the_geom FROM"'
insert += self.dlg.comboCapaDesti.currentText() + '" ORDER BY "id");'
try:
    cur.execute(insert)
    conn.commit()
except:
    print ("Insert Points NecessaryPoints ERROR")

Después se añade el id del tramo más próximo a cada punto, los puntos proyectados sobre el grafo y la fracción de segmento en la que se encuentran.

update = 'UPDATE NecessaryPoints_'+Fitxer
update += ' SET "edge_id"=tram_proper."tram_id"'
update += ' FROM (SELECT distinct on(Poi."pid") Poi."pid" AS Punt_id,Sg."id" AS Tram_id,'
update += ' ST_Distance(Sg."the_geom",Poi."the_geom") AS dist '
update += 'FROM "Xarxa_Prova" as Sg,NecessaryPoints_'+Fitxer+' AS Poi '
update += 'ORDER BY Poi."pid",ST_Distance(Sg."the_geom",Poi."the_geom"),Sg."id") tram_proper'
update += ' WHERE NecessaryPoints_'+Fitxer+'."pid"=tram_proper."punt_id";\n'

update += 'UPDATE NecessaryPoints_'+Fitxer
update += ' SET fraction = ST_LineLocatePoint(e.the_geom, NecessaryPoints_'+Fitxer+'.the_geom),'
update += 'newPoint = ST_LineInterpolatePoint(e."the_geom",'
update += ' ST_LineLocatePoint(e."the_geom", NecessaryPoints_'+Fitxer+'."the_geom"))'
update += ' FROM "Xarxa_Prova" AS e WHERE NecessaryPoints_'+Fitxer+'."edge_id" = e."id";\n'
try:
    cur.execute(update)
    conn.commit()
except:
    print ("Update Points NecessaryPoints ERROR")

Ahora ya está todo preparado para poder realizar el cálculo. Se hace una consulta para poder generar una sentencia SQL que haga la búsqueda de todos los caminos más cortos a todos los puntos necesarios y después se añaden a una tabla llamada “Resultat”.

select = 'select * from NecessaryPoints_'+Fitxer+' order by pid'
cur.execute(select)
vec = cur.fetchall() 
create = 'create local temp table "Resultat" as SELECT * FROM (\n'
for x in range (0,len(vec)):
    if x < len(vec) and x >= 2:
        create += 'UNION\n'
    if x != 0:
        if vec[x][4] == 1.0 or vec[x][4] == 0.0:
            create +='select '+ str(x) +' AS routeID,'+ str(vec[x][2])
            create +=' AS entitatID, * FROM pgr_withPointsKSP'
            create +='(\'SELECT id, source, target, cost, reverse_cost '
            create +='FROM "Xarxa_Prova" ORDER BY id\','
            create +='\'SELECT pid, edge_id, fraction FROM NecessaryPoints_'
            create +=Fitxer+'\',-1,' + str(vec[x][2])+',1)\n'
        else:
            create += 'select '+ str(x) +' AS routeID,'+ str(vec[x][2])
            create +=' AS entitatID, * FROM pgr_withPointsKSP'
            create +='(\'SELECT id, source, target, cost, reverse_cost '
            create +='FROM "Xarxa_Prova" ORDER BY id\','
            create +='\'SELECT pid, edge_id, fraction FROM NecessaryPoints_'
            create +=Fitxer+'\',-1,-' + str(vec[x][0]) +',1)\n'
create += ')QW ORDER BY routeID, seq;'

drop = 'DROP TABLE IF EXISTS "Resultat";'
try:
    cur.execute(drop)
    conn.commit()
except:
    print ("DROP TABLE ERROR 2")

try:
    cur.execute(create)
    conn.commit()
except:
    print ("CREATE TABLE Resultat global ERROR")

A continuación se deberá solucionar el problema que se ha comentado en la introducción del post, es decir, se seleccionarán los segmentos que son inicio y final para añadirlos al resultado final.

Selección de los segmentos finales

Lo primero que se debe hacer es borrar y crear la tabla “Segments finals”, en la cual figurarán todos los caminos posibles que son principio y/o final.

drop = "DROP TABLE IF EXISTS \"SegmentsFinals\";"
try:
    cur.execute(drop)
    conn.commit()
except:
    print ("DROP TABLE ERROR 1")

create = "CREATE local temp TABLE \"SegmentsFinals\" (\n"
create += "\trouteid int8,\n"
create += "\tedge int8,\n"
create += "\t\"edgeAnt\" int8,\n"
create += "\tfraction FLOAT,\n"
create += "\t\"ordreTram\" int8,\n"
create += "\t\"cutEdge\" geometry);"
try:
    cur.execute(create)
    conn.commit()
except:
    print ("CREATE TABLE SegmentsFinals ERROR")

Después se realiza una consulta que determinará qué segmentos son inicio y final.

select = 'SELECT routeid, node, edge FROM "Resultat" ORDER BY routeid, path_seq;'
try:
    cur.execute(select)
    vec = cur.fetchall()
    conn.commit()
except:
    print ("SELECT Resultat ERROR")

insert = ''
for x in range (len(vec)):
    if vec[x][1] < 0:
        if vec[x][1] != -1:
            insert +='INSERT INTO "SegmentsFinals" (routeid, edge, "edgeAnt", "ordreTram") '
            insert +='VALUES (' + str(vec[x][0]) + ', ' + str(vec[x-1][2]) + ', '
            insert +=str(vec[x-2][2]) + ', ' + str(2) +');\n'
        else:
            insert +='INSERT INTO "SegmentsFinals" (routeid, edge, "edgeAnt", "ordreTram") '
            insert +=VALUES (' + str(vec[x][0]) + ', ' + str(vec[x][2]) + ', '
            insert +=str(vec[x+1][2]) + ', ' + str(1) + ');\n'
try:
    cur.execute(insert)
    conn.commit()
except:
    print ("INSERT TABLE SegmentsFinals ERROR")

Se realiza un UPDATE para poder añadir la fracción de segmento en la cual se encuentra el punto.

select = 'SELECT routeid, edge, "ordreTram" FROM "SegmentsFinals" ORDER BY routeid, "ordreTram";'
try:
    cur.execute(select)
    vec = cur.fetchall()
    conn.commit()
except:
    print ("SELECT SegmentsFinals ERROR")

update = ''
for x in range(len(vec)):
    ruta = vec[x][0]
    edge = vec[x][1]
    ordre = vec[x][2]
    if ordre == 1:
        update +='UPDATE "SegmentsFinals" s SET fraction = n.fraction FROM NecessaryPoints_'
        update +=Fitxer+' n where n.edge_id = '+str(edge)+' AND s.edge ='+str(edge)
        update +=' AND s."ordreTram" = 1 AND s.routeid = '+str(ruta)+' AND n.entitatid = 0;\n'
    else:
        update +='UPDATE "SegmentsFinals" s SET fraction = n.fraction FROM NecessaryPoints_'
        update +=Fitxer+' n where n.edge_id = '+str(edge)+' AND s.edge ='+str(edge)
        update +=' AND s."ordreTram" = 2 and s.routeid = '+str(ruta)
        update +=' AND n.pid = '+str(ruta+1)+';\n'

try:
    cur.execute(update)
    conn.commit()
except:
    print ("UPDATE TABLE SegmentsFinals ERROR")

A continuación se realiza una consulta para escoger y añadir el trozo de tramo que corresponde a cada inicio y final. Posteriormente se hace un UPDATE del campo de geometría de la tabla “SegmentsFinals” con los tramos ya recortados.

select = 'SELECT * FROM "SegmentsFinals" ORDER BY routeid;'
try:
    cur.execute(select)
    vec = cur.fetchall()
    conn.commit()
except:
    print ("SELECT SegmentsFinals ERROR")
updateSegment = ''
for x in range(len(vec)):
    ordre = vec[x][4]
    fraction = vec[x][3]
    edgeAnt = vec[x][2]
    edge = vec[x][1]
    selectTouch ='SELECT ST_Touches((SELECT ST_Line_Substring("Xarxa_Prova"."the_geom",0,'
    selectTouch +=str(fraction)+') AS geom FROM "Xarxa_Prova" WHERE"id"='+str(edge)+'),'
    selectTouch +='(SELECT the_geom as geom FROM "Xarxa_Prova" WHERE "id"='+str(edgeAnt)+'));'
    try:
        cur.execute(selectTouch)
        resposta = cur.fetchall()
        conn.commit()
    except:
        print ("SELECT TOUCH ERROR")
    if edgeAnt != -1: 
        if resposta[0][0]:
            updateSegment +='UPDATE"SegmentsFinals" sf SET "cutEdge" = '
            updateSegment +='ST_Line_Substring(s."the_geom",0,'+str(fraction)+') '
            updateSegment +='FROM "Xarxa_Prova" s '
            updateSegmnet +='WHERE sf."edge"='+str(edge)+' AND s."id"='+str(edge)
            updateSegment +=' AND sf."routeid" = '+str(vec[x][0])+';\n'
        else:
            updateSegment +='UPDATE "SegmentsFinals" sf SET "cutEdge" = '
            updateSegment +='ST_Line_Substring(s."the_geom",'+str(fraction)+',1) '
            updateSegment +='FROM "Xarxa_Prova" s '
            updateSegment +='WHERE sf."edge"='+str(edge)+' and s."id"='+str(edge)
            updateSegment +=' and sf."routeid" = '+str(vec[x][0])+';\n'
    else:
        if ordre == 1:
            fractForward = vec[x+1][3]
        else:
            fractForward = vec[x-1][3]
        if fraction >= fractForward:
            updateSegment +='UPDATE "SegmentsFinals" sf SET "cutEdge" = '
            updateSegment +='ST_Line_Substring(s."the_geom",'+str(fractForward)+','
            updateSegment +=str(fraction)+') FROM "Xarxa_Prova" s '
            updateSegment +='WHERE sf."ordreTram" = '+ str(ordre)+' and sf."edge"='
            updateSegment +=str(edge)+' and s."id"='+str(edge)+' and sf."routeid" = '
            updateSegment +=str(vec[x][0])+';\n'
        else:
            updateSegment +='UPDATE "SegmentsFinals" sf SET "cutEdge" = '
            updateSegment +='ST_Line_Substring(s."the_geom",'+str(fraction)+','
            updateSegment +=str(fractForward)+') FROM "Xarxa_Prova" s '
            updateSegment +='WHERE sf."ordreTram" = '+ str(ordre)+' and sf."edge"='
            updateSegment +=str(edge)+' and s."id"='+str(edge)+' and sf."routeid" = '
            updateSegment +=str(vec[x][0])+';\n'

try:
    cur.execute(updateSegment)
    conn.commit()
except:
    print ("UPDATE TABLE SegmentsFinals Geometries ERROR")

Se añade y se actualiza el campo de geometría en la tabla “Resultat”.

alter = 'ALTER TABLE "Resultat" ADD COLUMN newEdge geometry;\n'
alter += 'UPDATE"Resultat" r SET newedge = s.the_geom FROM "Xarxa_Prova" s WHERE s.id = r.edge;'

try:
    cur.execute(alter)
    conn.commit()
except:
    print ("ALTER and UPDATE TABLE Resultat Geometries ERROR")

Acto seguido se actualizan los tramos recortados en la tabla “Resultat”.

update = 'UPDATE "Resultat" r SET newedge = s."cutEdge" FROM "SegmentsFinals" s '
update += 'WHERE s."routeid" = r.routeid AND s.edge = r.edge;'
try:
    cur.execute(update)
    conn.commit()
except:
    print ("ALTER and UPDATE TABLE Resultat Geometries ERROR")

Se seleccionan los N caminos más próximos a la dirección indicada en función del límite introducido por el usuario.

limit = self.getLimit()
select ='SELECT e."'+ nomCamp[0][0] +'" AS NomEntitat, r.agg_cost AS Cost, r.entitatID '
select +='FROM "Resultat" r JOIN "' + self.dlg.comboCapaDesti.currentText()
select += '" e ON r.entitatID = e.id WHERE r.edge = -1 ORDER BY 2 ASC limit ' + str(limit) + ';'
try:
    cur.execute(select)
    vec = cur.fetchall()
    conn.commit()
except:
    print ("SELECT resultats ERROR")

Finalmente se borrará y se creará una tabla para obtener todos los tramos para cada camino óptimo escogido y, al mismo tiempo, se añade la información obtenida en el SELECT anterior.

createTrams = 'DROP TABLE IF EXISTS "TramsNous_'+Fitxer+'";\n'
createTrams += 'CREATE TABLE "TramsNous_'+Fitxer+'" AS SELECT * FROM (\n' 
rowCount = self.dlg.taulaResultat.rowCount()
self.dlg.taulaResultat.setColumnCount(2)
self.dlg.taulaResultat.setHorizontalHeaderLabels(['Entitat', lbl_Cost])
if self.dlg.comboCost.currentText() == 'Distancia':
    rnd = 0
else:
    rnd = 1
for x in range (rowCount,len(vec)):
    self.dlg.taulaResultat.insertRow(x)
    self.dlg.taulaResultat.setItem(x, 0, QTableWidgetItem(str(vec[x][0])))
    self.dlg.taulaResultat.setItem(x, 1, QTableWidgetItem(str(round(vec[x][1],rnd))))
    if x < len(vec) and x >= 1:
        createTrams += 'UNION\n'

    createTrams +='SELECT entitatid, \'' + str(vec[x][0].replace("'","''"))
    createTrams +='\' AS "NomEntitatDesti" ,'+str(round(vec[x][1]))
    createTrams +=' AS agg_cost, ST_Union(newedge) AS the_geom from "Resultat" '
    createTrams +='WHERE entitatid = '+str(vec[x][2])+' GROUP BY entitatid\n'
createTrams += ")total ORDER BY agg_cost ASC;"
QApplication.processEvents()
try:
    cur.execute(createTrams)
    conn.commit()
except:
    print ("create trams ERROR")

A partir de este punto, lo único que quedará por hacer es presentar en pantalla el resultado.

Conclusión

Como conclusión final del post, cabe destacar que este método permite mejorar y refinar el resultado que se obtiene de una de las funciones de la librería pgrouting. De este modo, se ha podido conseguir que al calcular la distancia más corta de uno a varios puntos se obtenga el punto de segmento concreto en el cual se encuentra el inicio o el final, en vez de quedarse simplemente con el nodo más cercano a dichos puntos.

Manual d’ús de l’usuari: Cerca de trajectes a entitats

Aquest document explica el funcionament del mòdul de ‘Cerca de Trajectes a Entitats’ per a QGIS. Aquest mòdul permet obtenir els trajectes o camins entre una adreça qualsevol de Mataró entrada per l’usuari i les N entitats més properes (també escollides per l’usuari). El cost pot estar en funció de la distància o el temps. Els desplaçaments obtinguts es mostren de forma ordenada de menys a més cost en forma de taula i de capa. Per a poder utilitzar-lo, el primer que s’ha de fer és executar el programa QGIS i un cop inicialitzat aquest, cal pitjar la icona següent CTE2o anar a Complementos -> CCU -> Cerca de Trajectes a Entitats i s’obrirà una finestra com la que podem veure a continuació a la figura 1.

CTE1

Figura 1: Imatge de l’estat inicial del mòdul CTE

Aquest mòdul es pot dividir bàsicament en tres parts diferenciades: origen (1) , destí (2), connexió i botons (3).

1. Connexió i altres botons

La primera part a mostrar inclou els botons de funcionament del mòdul (d’esquerra a dreta):

  • Connexió: pestanya desplegable on es mostren totes les connexions.
  • Botó ‘Inici’: aquest botó inicia el procés de consulta del mòdul.
  • Botó ‘Sortir’: aquest botó tanca el mòdul.

CTE5

Figura 2: Connexió i botons

2. Origen

En aquesta part del mòdul l’usuari troba les eines per escollir el punt d’inici, més concretament l’adreça. Seguidament es descriuran les seves parts, començant per la part superior:

CTE3

Figura 3: Origen

El primer element que trobem és una camp de text per cerca el nom del carrer a on es troba l’origen. Inicialment, en el gran requadre inferior, s’hi llisten tots els noms de carrers i a mesura que es va introduint un nom, la llista es va actualitzant automàticament amb els noms que s’assemblen al nom que introdueix l’usuari fins a trobar el desitjat. Una vegada, s’ha trobat el carrer, cal fer doble clic en el nom perquè quedi ben especificat en el camp de text.

Posteriorment, s’ha d’escriure el número del portal que desitgem, juntament amb la lletra. En el cas de la lletra no és necessari escollir-ne una.

Per acabar, a la dreta del camp de text per introduir el nom hi ha un botó amb una creu (X) que permet esborrar el contingut del camp de text.

3. Destí

En aquesta part del mòdul, l’usuari pot escollir la capa de destí i les diferents característiques dels camins: cost, número de camins i aproximació en cas de no existir l’adreça desitjada.

Començant per la part superior, el primer que trobem és una pestanya desplegable on es mostren les diferents capes de punts que poden ser destí. Just a sota hi trobem els modes de cerca. El primer que trobem són dos botons, de color verd i vermell respectivament.

El botó “Més proper” escull l’adreça amb el número de portal més proper a la adreça que s’ha seleccionat, independentment de si és parell o senar, i sempre que l’adreça escollida per l’usuari no existeixi.

En canvi, el botó “Més proper Parell/Senar” escull el portal amb el número senar o parell en funció de quin dels dos tipus sigui el número que s’hagi escollit prèviament, i sobretot que no existeixi.

A la dreta d’aquests dos botons, hi ha una spin box que permet escollir el nombre de camins desitjats, en un rang de 1 a 10 camins. En el cas que el nombre de camins sigui superior al nombre d’entitats d’una capa, el número de camins serà tants com entitats tingui la capa escollida.

Després trobem una pestanya desplegable on es pot triar el cost dels camins: distància o temps. En el cas d’escollir la opció de temps, hi ha un check box que permet incloure en el cost el cost de nusos.

A sota hi ha un gran requadre que s’utilitza per mostrar els resultats de la cerca que s’ha realitzat. La taula que es mostra té dos columnes: la primera mostra el nom de l’entitat de destí i la segona mostra el cost: si és distància en metres i si és en temps en minuts.

Entre la opció del cost i el requadre de resultats hi ha un espai buit que un cop s’ha fet la consulta hi apareix l’adreça de l’origen.

CTE4

Figura 4: Secció de destí

Manual d’ús de l’usuari: Mapes descriptius de població

Aquest document explica el funcionament del plugin de ‘Mapes descriptius de població’ per a QGIS.  Per a poder utilitzar-lo, el primer que s’ha de fer és executar el programa QGIS i un cop inicialitzat aquest, cal pitjar la icona següent 101o anar a Complementos -> CCU -> Mapes descriptius de població i s’obrirà una finestra com la que podem veure a continuació a la figura 1, que és molt semblant a la interfície del plugin de la Taula Resum amb algunes diferències descrites en els apartats 1 i 4.
1054 quines capes volem treballar: illes, parcel·les, seccions, barris o districtes postals.

103

Fig 2. Mètode de treball

  1. A la part superior central, hi ha una pestanya desplegable amb les connexions disponibles (ja configurades prèviament) per a realitzar les operacions. Allà n’escollim una i seguidament la barra que hi ha just a sota n’indicarà l’estat.

104

Fig 3. Connexió i progrés

  1. A la zona lateral dreta hi podem trobar el selector de filtres que volem utilitzar per crear la consulta. Només cal pitjar el filtre que vulguem aplicar per poder-lo emprar. Just a sota hi trobem dos botons més: INICI i SORTIR. ‘Inici’ arrenca el procés de representació del mapa i en el cas que hi hagi algun error en la configuració dels paràmetres per a la construcció d’aquestes, el procés s’interromp i ens apareix un missatge amb l’error. I el botó sortir, tanca el plugin.

105

Fig 4. Opcions i ordres principals

  1. Finalment, a la part central, tenim requadre amb dos pestanyes amb les opcions: configuració de la capa de sortida i els filtres.

106
Fig 5. Pestanyes

Per una banda, a la pestanya de ‘Filtres’ podem trobar-hi un requadre amb cinc pestanyes per poder configurar els paràmetres de cada  filtre. Recordem que el filtre es defineix en aquesta pestanya però s’activa pel botó lateral de la figura 4. , s’han de fer les dues coses.

Seguidament els detallarem:

  • El primer que apareix és l’edat. En aquesta pestanya s’ha d’introduir en primer lloc una data segons la qual es vulgui fer l’estudi, per exemple 1 de maig de 2016. Després hem de posar el marge d’edat que volem definir en els camps edat mínima i edat màxima. Si volem fer una taula per les escoles bressol, cal posar 0 i 2 anys en els dos camps respectivament. Seleccionant la opció criteri restrictiu cercarem els nens que encara no hagin fet els 2 anys. En canvi seleccionant el criteri no restrictiu cercarem tots els nens que encara no han fet els tres anys.

107
Fig 6. Filtre per edat

  • El segon criteri que apareix és el gènere. Podem decidir que la nostra cerca sigui en funció d’homes o de dones.

108
Fig 7. Génere

  • A continuació tenim els estudis: podem fer un filtratge segons els estudis que la persona hagi declarat tenir en el padró.

109
Fig 8. Estudis

  • Un altre punt molt important seria l’origen no confondre amb nacionalitat.

Una cosa és el país d’origen, és a dir, on ha nascut la persona en qüestió i l’altre la nacionalitat. La segona és quelcom més complex d’explicar, ja que està subjecte als conceptes de “ius sanguini” i “ius soli”. En el primer cas, quelcom comú als països europeus, africans i la Xina, els nen/a tenen automàtica la nacionalitat d’origen dels pares. Això comporta, per exemple, que un nen/a nascuda de pares marroquins a Mataró tingui nacionalitat marroquina. En el segon cas, si neixes en un país de dret de “ius soli”, obtens la automàticament la nacionalitat del país on neixes. Aquesta és la situació de la majoria de països llatinoamericans.

Llavors, en aquesta finestra podem filtrar la nostre cerca segons diferents criteris:

  1. Pel país d’origen
  2. Per la zona del país d’origen
  3. Per que el seu país d’origen pertanyi a la unió europea.

110

Fig 9. Origen

  • Per últim la nacionalitat, que té els mateixos criteris de filtratge que en l’apartat anterior.

111

Fig 10 . Nacionalitat

Per altra banda, a la pestanya de ‘Configuració de la sortida’ hi trobem diferents opcions per a la visualització dels resultats obtinguts.

112

Fig 11. Configuració de la sortida

Seguidament s’explicaran detalladament de què consta cada element:

  1. En primer lloc escollim la opció amb la qual volem que es faci el càlcul. Podem escollir entre tres opcions:
    • Habitants absoluts: retorna el número absolut dels habitants afectats pel filtre que hem escollit.
    • Habitants relatius: retorna el percentatge d’habitants afectats pel filtre entre el número total de persones que viuen en l’entitat que hem escollit per fer la cerca.
    • Densitat: retorna la densitat de població que està afectada pel filtre en Habitants/km2.
  1. En segon lloc escollim entre dues opcions pel color de la capa de sortida: un color únic per a tota la capa on en podem en podem regular la transparència, o bé un degradat de colors per indicar el major o menor nombre de persones afectades, on podem escollir-ne el número de intervals i el mode del temàtic que vol dir la forma en que es defineix cada rang, igual nombre de incidències , igual amplada de l’interval etc.
  1. En tercer i últim lloc tenim la possibilitat d’afegir etiquetes i modificar-ne algunes de les seves propietats com ara la mida i el color de la lletra i també la visualització en escala. Els valors de l’escala de visualització tenen un valor per defecte per a cada tipus d’entitat, però es poden modificar sense cap mena de problema.

Una vegada aplicats els filtres a la cerca per qualsevol dels criteris explicats anteriorment i configurats els paràmetres de sortida, només cal pitjar el botó “INICI”.

 

Manual d’ús del mòdul ‘Zones d’influència adaptatives’

Aquest document explica el funcionament del plugin de ‘Zones d’influència adaptatives’ per a QGIS.  Per a poder utilitzar-lo, el primer que s’ha de fer és executar el programa QGIS i un cop inicialitzat aquest, cal pitjar la icona següent1

o anar a Complements -> CCU -> Zones d’influència adaptatives i s’obrirà una finestra com la que podem veure a continuació a la imatge.

2

Aquest mòdul el que fa és ajustar la zona d’influència de cada entitat proveïdora d’un servei a la població a la capacitat de cada centre (que s’ha de fixar en la BD prèviament), tenint en compte la densitat de la problació ‘target’ del seu entorn. Aquesta zona d’influència pot ser circular o seguint el Graf de Trams de Carrer.

A continuació es detallaran els diferents components del plugin i quina és la seva funció:

  1. A la part superior, hi ha un barra on s’hi indica l’estat de la connexió i una pestanya desplegable amb les connexions disponibles (ja configurades prèviament) per a realitzar les operacions. Allà n’escollim una.3
  2. En aquesta part escollirem la capa de punts a partir de la qual volem fer la zona d’influència i el color que tindrà.4
  3. Just a sota trobarem tres botons que ens permetran escollir la capa sobre la que volem treballar: Illes, parcel·les o portals.5
  4. En aquesta secció cal introduir un número de iteracions que volem que es realitzin.6
    Hem de tenir present que el programa fa el recalcul del següent radi (o distància) a partir del nombre de persones trobades prèviament dins de la zona i això ho pot fer una vegada (cas de una iteració) o unes quantes, poguent anar refinant l’ajust, però amb augment del temps de càlcul.
  1. En l’apartat de cobertura caldrà dir el percentatge de població sobre el qual volem fer l’estudi. També marcarem el checkBox en el cas que vulguem que es mostri la població no afectada per la zona d’influència. Una vegada realitzada la operació, ens apareixerà el nombre d’habitants no coberts en el requadre blanc, a la part inferior.7
  2. Aquí cal introduir el radi inicial a partir del qual treballarem amb les entitats puntuals. Es una radi inicial mitjà a partir del qual i segons la capacitat de cada centre s’assigna el radi inicial particular de cada un.8
  3. En aquest apartat es pot escollir zones d’influència de graf si se selecciona l’opció ‘fer servir trams’. En cas contrari, les zones d’influència són circulars. En cas de fer servir trams, podem fer que es vegi el dibuix del graf marcan el checkBox corresponent. També es pot modificar el radi de la zona d’influència canviant el valor en el textBox.9
  4. En el cas que la opció de ‘fer servir trams’ estigui habilitada, cal escollir un graf sobre la qual treballar, mitjançant la pestanya desplegable. També podem escollir el color de l’àrea d’influència i modificar el traç amb la pestanya desplegable inferior.10
  5. En últim lloc, a la part inferior de la finestra podem trobar la versió de la plugin amb la que estem treballant i dos botons: ‘INICI’ per començar el processament de les dades i ‘SORTIR’ per tancar el plugin.11

 

Manual de preparació de l’entorn d’usuari QGIS

En aquesta secció s’expliquen els passos a seguir per instal·lar el programa QGIS en el nostre entorn. El primer pas a seguir és anar al lloc web de QGIS (www.qgis.org) i dirigir-se a l’apartat de descàrregues (http://qgis.org/es/site/forusers/download.html). Allà es podran trobar dues versions del programa: la versió més recent i la de llarg termini. Qualsevol de les dues és perfectament vàlida, tot i que si l’usuari del programa treballa per una empresa o institució pública, recomanem la versió de llarg termini. Un cop escollida la versió, només cal descarregar-la.27

Un cop descarregada, cal instal·lar-la en el nostre equip. Només cal que fem doble clic a l’arxiu que hem descarregat prèviament. Llavors s’executarà l’instal·lador i només cal seguir els passos que ens indica. Un cop completat aquest procés, ja podrem executar el QGIS.

Per poder instal·lar els plugins que s’utilitzen per tractar les dades cal anar a Complementos à Administrar e instalar complementos… i ens apareixerà una finestra com la següent:28 Anem a la pestanya de configuració.29

Marcarem la opció de “comprovar actualitzacions a l’inici”, que es troba a la part superior, i posteriorment escollirem la periodicitat de l’acció amb les diferents opcions del desplegable que podem trobar just a sota.
També és necessari afegir el repositori on es troben els plugins necessaris per treballar. Cal prémer el botó Añadir…, que es troba a la part inferior, i ens apareixerà la finestra que es mostra a continuació.30

En el camp de nom cal afegir un nom com per exemple “Plugins CCU Tecnocampus” i en el camp de la URL cal posar http://geoportalccu.tecnocampus.cat/plugins.xml. Un cop fet, acceptem i tornem a l’apartat de Todos. A la part superior hi podrem trobar un barra de cerca on buscarem els plugins necessaris: TaulaResum, Activitats Econòmiques i ZI-GTC.

Un cop els trobem, pitgem sobre ells i finalment només caldrà instal·lar-los en el nostre equip.31

Aleshores només cal tancar la finestra i afegir les connexions a la base de dades per a poder treballar amb el QGIS. Per últim només ens farà falta configurar la connexió amb la base de dades. Per poder-ho fer cal seguir els següents passos:

Primer cal cercar a la barra d’eines en el lateral esquerra de la nostra pantalla una icona com aquesta 32Un cop ho haguem fet, ens apareixerà una finestra com la de la figura 1. En allà cal prémer el botó “Nueva”, tal i com està senyalitzat a la mateixa figura. Posteriorment ens ha d’aparèixer una finestra com la de la figura 2. En allà cal introduir els camps necessaris per configurar la connexió: usuari, nom de la base de dades, servidor i contrasenya. Una vegada fet, només es necessari prémer el botó Acceptar de les dues finestres mencionades prèviament i ja tindríem l’entorn preparat per treballar.

33Figura 134

Figura 2

Manual d’ús del mòdul ‘ZI-GTC’

Aquest post explica el funcionament del plugin de ‘ZI-GTC’ per a QGIS.  Per a poder utilitzar-lo, el primer que s’ha de fer és executar el programa QGIS i un cop inicialitzat aquest, cal pitjar la icona següent17 o anar a Complementos -> CCU -> Càlcul de població afectada i s’obrirà una finestra com la que podem veure a continuació a la imatge.18_2

A continuació es detallaran els diferents components del plugin i quina és la seva funció:

  1. Comencem per la part superior, on hi trobem una pestanya desplegable i un requadre. A la pestanya s’escull la connexió amb la que volem treballar, i que prèviament hem configurat en el QGIS. En el requadre indica l’estat de la connexió.19
  2. En segon lloc, trobem una pestanya desplegable on hi podem seleccionar la entitat puntual sobre la qual volem treballar.20
  3. Just a sota, podem trobar una altra pestanya desplegable. En aquesta ocasió tindrem la possibilitat d’escollir la xarxa de carrers sobre la qual volem treballar. Per poder utilitzar la capa, cal que disposem d’accés a una taula auxiliar amb els vèrtex. Cada vegada que seleccionem una capa de graf, el plugin s’encarrega de comprovar que la capa auxiliar hi sigui. En el cas que no hi sigui, un missatge apareixerà per tal d’informar de la situació a l’usuari.21
  1. En quart lloc, hi ha el menú per seleccionar el mètode de treball: primer trobem un desplegable per treballar sobre la distància o el temps. Just a dreta hi trobem dos checkBox que només s’activen quan en el desplegable hi ha escollida la opció de ‘Temps’ i que s’utilitzen per indicar si volem utilitzar el cost invers i el de nusos. Després hi ha un camp per omplir text on l’indicarem amb un número la distància o el temps amb la que volem fer el buffer, i en últim lloc hi ha una pestanya desplegable on hi podrem escollir el camp de la taula de la xarxa de carrers que s’utilitzarà com a camp de distància o temps, segons s’hagi escollit.22
  1. Just després del mètode de treball, hi trobem les opcions d’aparença del graf. Primer hi ha un checkBox que habilita el botó amb el qual s’escull el color i una pestanya on s’escull el gruix del traç. A més a més, hi ha un camp on hi podem indicar el radi en metres de la zona d’influència de l’entorn del graf.23
  1. Seguidament hi ha una pestanya on podem escriure el títol de la llegenda. En el moment en què escollim una entitat puntual, aquest camp s’actualitzarà automàticament per “<nom de la entitat>”. Tot i això, el títol pot ser el que nosaltres vulguem.24
  1. Després d’això, trobarem l’apartat on seleccionarem el mètode per treballar amb la població. Primer trobarem un checkBox on indicarem si volem treballar amb la població. En cas afirmatiu, ens apareixerà el menú amb les opcions just a sota. En aquest menú hi apareixen 3 botons on indicarem si volem treballar amb les illes, parcel·les o portals. En la part inferior hi ha una etiqueta blanca on hi apareix el percentatge d’habitants afectats per la zona d’influència del càlcul, un cop realitzat. A la dreta hi ha un checkBox on hi indicarem si volem que es mostri la població exclosa.25
  2. Finalment, a la part inferior de la finestra hi ha dos botons: el de ‘SORTIR’ i el de processar o ‘INICI’. El de SORTIR serveix per tancar la pestanya. El botó ‘INICI’ serveix per processar la consulta que li hem indicat amb els elements que acabem de veure. Segons les opcions que li haguem indicat, ens apareixerà un resultat o un altre. En el cas que alguna de les dades o la connexió no sigui correcta, el programa advertirà de la incidència a l’usuari. Un cop aquesta sigui resolta, l’usuari podrà executar el programa amb normalitat.26

Manual d’ús del mòdul ‘TaulaResum’

Aquest document explica el funcionament del plugin de ‘Taula Resum’ per a QGIS.  Per a poder utilitzar-lo, el primer que s’ha de fer és executar el programa QGIS i un cop inicialitzat aquest, cal pitjar la icona de la figura 1 o anar a Complementos -> CCU -> Taula Resum i s’obrirà una finestra com la que podem veure a la figura 2.

icona figura 1

inici figura 2

A continuació es detallaran els diferents components del plugin i quina és la seva funció:

  1. A la part superior esquerra, hi ha un rectangle on hi indicarem sobre quines capes volem treballar: illes, parcel·les, portals o totes tres alhora.met-treb
  2. A la part superior central, hi ha una pestanya desplegable amb les connexions disponibles (ja configurades prèviament) per a realitzar les operacions. Allà n’escollim una i seguidament la barra que hi ha just a sota n’indicarà l’estat.connexio
  3. A la zona lateral dreta hi podem trobar el selector de filtres que volem utilitzar per crear les taules. Només cal pitjar el filtre que vulguem aplicar per poder-lo emprar. Just a sota hi trobem dos botons més: crear taula i sortir. Crear taula inicia el procés de creació de taules i en el cas que hi hagi algun error en la configuració dels paràmetres per a la construcció d’aquestes, el procés s’interromp i ens apareix un missatge amb l’error. I el botó sortir, tanca el plugin.filtres
  4. Finalment, a la part central, tenim requadre amb cinc pestanyes amb les opcions per poder configurar els paràmetres de cada filtre. Seguidament els detallarem:
    • El primer que apareix és l’edat. En aquesta pestanya s’ha d’introduir en primer lloc una data segons la qual es vulgui fer l’estudi, per exemple 1 de maig de 2016. Després hem de posar el marge d’edat que volem definir en els camps edat mínima i edat màxima. Si volem fer una taula per les escoles bressol, cal posar 0 i 2 anys en els dos camps respectivament. Seleccionant la opció criteri restrictiu cercarem els nens que encara no hagin fet els 2 anys. En canvi seleccionant el criteri no restrictiu cercarem tots els nens que encara no han fet els tres anys.

pest

    • El segon criteri que apareix és el gènere. Podem decidir que la nostra cerca sigui en funció d’homes o de dones.

pest2

    • A continuació tenim els estudis: podem fer un filtratge segons els estudis que la persona hagi declarat tenir en el padró.

pest3

  • Un altre punt molt important seria l’origen no confondre amb nacionalitat. Una cosa és el país d’origen, és a dir, on ha nascut la persona en qüestió i l’altre la nacionalitat. La segona és quelcom més complex d’explicar, ja que està subjecte als conceptes de “ius sanguini” i “ius soli”. En el primer cas, quelcom comú als països europeus, africans i la Xina, els nen/a tenen automàtica la nacionalitat d’origen dels pares. Això comporta, per exemple, que un nen/a nascuda de pares marroquins a Mataró tingui nacionalitat marroquina. En el segon cas, si neixes en un país de dret de “ius soli”, obtens la automàticament la nacionalitat del país on neixes. Aquesta és la situació de la majoria de països llatinoamericans. Llavors, en aquesta finestra podem filtrar la nostre cerca segons diferents criteris:
    1. Pel país d’origen
    2. Per la zona del país d’origen
    3. Per que el seu país d’origen pertanyi a la unió europea.

pest4

    • Per últim la nacionalitat, que té els mateixos criteris de filtratge que en l’apartat anterior.

pest5

Una vegada aplicats els filtres a la cerca per qualsevol dels criteris explicats anteriorment, ja podem crear la teva taula resum, seleccionant tots els botons dels filtres sobre els quals volem fer la cerca i posteriorment pitjant al botó “crear taula”.

Creació del plugin ‘Taula Resum’

Introducció

En aquest post es podrà llegir els passos que cal seguir per a construir el plugin ‘Taula Resum’ per a QGIS.

En el plugin ‘TaulaResum’ cal destacar el canvi de filosofia que s’ha produït amb el canvi de GeoMedia, el qual treballa amb bases de dades locals, al QGIS. En canvi amb aquest últim hem passat a treballar amb un topologia client-servidor, que permet que tots els usuaris que disposin de les credencials podran accedir a les bases de dades sempre que vulguin i des de qualsevol lloc. I només el cal tenir el mòdul QGIS amb el mòdul instal·lat i podran treballar.

Sempre que fem referència a qualsevol element de l’entorn de programació o QGIS, aquest és explicat en el post sobre ‘com preparar l’entorn’.

Procés de creació

Disseny de la interfície

El primer que vam fer va ser la creació de la interfície del plugin. Un cop hem creada l’estructura del plugin amb el ‘Plugin Builder’, vam obrir l’arxiu amb format *.ui amb el Qt Designer i començarem amb la creació. Primer va caldre posar les pestanyes més exteriors (QTab Widget) i dimensionar-lo de manera adequada. Al voltant, vam afegir els elements que ajudaran a escollir els filtres, els mètodes de treball, l’elecció de la connexió i els botons per crear la taula i sortir. Un costum que tenim és el de posar una etiqueta amb la versió de la plugin, ja que ajuda a la identificació de quines són les funcions que pot tenir un plugin. Els plugins poden patir diferents actualitzacions i les funcions poden variar. En el cas de que hi hagi un error en una versió que no és la més recent, l’etiqueta facilita la detecció de l’error i es pot corregir ràpidament. El resultat de tot això es pot veure a la figura 1.

p1
Figura 1

Un vegada fet, vam afegir els elements de dintre les cinc pestanyes dels filtres. Finalment, el que vàrem fer és donar-li un nom que ajudi a la identificació de cada element interactiu de la interfície. Aquest serà el nom que utilitzarem per poder-hi interactuar dins el codi principal que controlarà el plugin. A la figura 2 es pot veure com quedaria la finestra amb la pestanya principal omplerta.

p2
Figura 2

Recomanem que siguin el més explícits possible ja que es podran evitar errades i també ajudaran a facilitar la comprensió del codi, com per exemple ‘ComboConnexio’ en referencia a la pestanya desplegable on s’hi indicarà la connexió que volem escollir.

Interacció amb les Bases de Dades

Per a poder realitzar qualsevol acció sobre la base de dades cal primer saber el nom d’usuari, nom de la base de dades, servidor i contrasenya. És recomanable guardar aquestes dades en variables globals i aconseguirem accedir-hi des de qualsevol funció en qualsevol moment. També cal fer l’import de la llibreria psycopg2 (import psycopg2) al principi del codi.

Per establir la connexió hem utilitzat el codi següent:

#Connexio
nomBD = nomBD1.encode('ascii','ignore')
usuari = usuari1.encode('ascii','ignore')
servidor = host1.encode('ascii','ignore')
contrasenya = contra1.encode('ascii','ignore')
try:
  estructura="dbname='"+nomBD+"' user='"+usuari
  +"' host='"+servidor+"' password='" + contrasenya + "'"
  conn = psycopg2.connect(estructura)
  cur = conn.cursor()
  cur.execute(Sentencia_sql)
  resultat = cur.fetchall()
  conn.close()

Utilitzarem la comanda execute(<sentencia SQL>) per realitzar la consulta. Per poder passar els resultats i per poder-los tractar utilitzarem la comanda fetchall() que retorna una matriu amb tots ells. És important tancar la connexió un cop haguem fet les consultes necessàries.

En el cas que ens ocupa, hi ha tres pestanyes del grup de pestanyes principals que necessiten llegir dades de la BD i exposar-les en els seus respectius camps. Com per exemple en la pestanya ‘Estudis’ hi ha un requadre amb una llista (QListWidget) on cal llistar-hi tots els estudis que hi pot haver i que tenim emmagatzemats a la taula del Padró. El que busquem nosaltres és una consulta que ens retorni els diferents tipus d’estudi que hi ha i ho hem resolt amb la sentencia SQL següent:

select distinct("HABNIVINS"),"NINDESCRI" from "public"."Padro" order by 2;

El camp “HABNIVINS” és l’identificador de l’estudi i el “NINDESCRI” és el nom de l’estudi que apareixerà al requadre de la llista. L’identificador de l’estudi el vincularem a l’estudi per mitjà del ToolTip(), que posteriorment ens facilitarà la construcció de la consulta que l’usuari desitja.

Connexió dels botons

Per poder vincular i recollir els estats dels elements de la interfície cal fer els següents passos. Primer de tot cal fer from TaulaResum_dialog import TaulaResumDialog per tal de poder vincular el fitxer de la interfície amb el codi.

Aleshores, a la funció init(), que ja ve creada pel Plugin Builder, hi posem les següents comandes:

self.dlg = TaulaResumDialog()
self.dlg.btoNACIONALITAT.toggled.connect(self.on_click_MarcarBotoNACIONALITAT)
self.dlg.comboConnexions.currentIndexChanged.connect(self.on_Change_ComboConn)

El primer inicialitza el diàleg amb el què hem d’interaccionar. Les altres dos activen les seves funcions respectives cada vegada que el valor que tinguin variï. Segons el tipus d’element que sigui, es pot canviar l’aparença o carregar elements per pantalla.

Cada element de la interfície ha de tenir una funció vinculada a ell per tal de que el codi sigui capaç de veure en quin estat està.

Programació dels efectes dels botons

Cada vegada que l’usuari interaccioni amb un dels elements de la interfície es produirà un efecte. En aquest apartat s’introduirà un exemple d’aquest tipus de comportament. Per l’exemple utilitzarem el codi següent:

def on_click_MarcarBotoEDAT(self, clicked):
if clicked:
  self.dlg.btoEDAT.setStyleSheet('background-color: #7fff7f')
  self.dlg.GrupPestanyes.setCurrentIndex(0)
else:
  self.dlg.btoEDAT.setStyleSheet('background-color:rgb(227,227,227)')

Aquesta funció es dedica a controlar l’aspecte del botó del filtre d’Edat. Si és clicat, canvia de color de fons i mostra la pestanya del filtre d’edat per tal que l’usuari esculli els paràmetres que vol analitzar. Altrament, li torna a posar el color de desactivat.

A més a més, cal tenir en compte que els elements de la interfície tenen memòria i que un cop els hi canviem l’estat, creem la taula i tanquem el plugin, una vegada el tornem a obrir, conserven el seu estat anterior. Això fa necessària una funció que posi aquests elements en el seu estat inicial cada vegada el que el plugin s’obri i s’utilitzi.

En el nostre cas, la majoria d’elements de la interfície tenen efectes molt senzills com el que hem explicat fa un moment però hi ha un botó que realitza una funció més complexa: crear la taula resum. Aquesta funció recull totes les dades que l’usuari ha introduït sobre els filtres que desitja analitzar, comprova que no hi hagi cap error o que falti alguna dada, es connecta amb la base de dades i escriu el resultat en fitxers de text .csv per a que l’usuari els pugui utilitzar sempre que vulgui.

Un altre punt important és el control d’errors. Cada cop que es produeixi un resultat no esperat s’ha controlar i avisar a l’usuari del que ha passat i indicar-li els passos per corregir l’errada. En el nostre cas, els errors més comuns es produeixen a l’hora de crear les consultes: l’usuari no introdueix correctament les dades de la consulta. Però també pot ser que la connexió no estigui disponible o que l’usuari no tingui els permisos adequats de lectura.

Quan es tracta d’un error relacionat amb la connexió s’adverteix a l’usuari per mitjà d’una etiqueta que n’indica l’estat. En el cas de tenir problemes amb la consulta, apareixen finestres amb el missatge d’error.

Prova del plugin

Una vegada hem programat totes les funcions, cal comprovar que els resultats són els esperats. Per fer-ho, cal que utilitzem el GeoMedia amb el plugin que s’utilitzava anteriorment i comprovar que si posem les mateixes variables d’entrada obtenim el mateix resultat.

Cal que el procés sigui exhaustiu perquè cal revisar cadascuna de les funcions que s’han implementat. S’han de fer totes les combinacions possibles i comprovar que el número de resultats ha sigut igual. En el cas que no ho sigui, s’han de comparar els codis i veure el punt on difereixen.