Entrades classificades amb: CCU

Manual d’ús de l’usuari: Mapes descriptius de població

Aquest document explica el funcionament del plugin de ‘Mapes descriptius de població’ per a QGIS.  Per a poder utilitzar-lo, el primer que s’ha de fer és executar el programa QGIS i un cop inicialitzat aquest, cal pitjar la icona següent 101o anar a Complementos -> CCU -> Mapes descriptius de població i s’obrirà una finestra com la que podem veure a continuació a la figura 1, que és molt semblant a la interfície del plugin de la Taula Resum amb algunes diferències descrites en els apartats 1 i 4.
1054 quines capes volem treballar: illes, parcel·les, seccions, barris o districtes postals.

103

Fig 2. Mètode de treball

  1. A la part superior central, hi ha una pestanya desplegable amb les connexions disponibles (ja configurades prèviament) per a realitzar les operacions. Allà n’escollim una i seguidament la barra que hi ha just a sota n’indicarà l’estat.

104

Fig 3. Connexió i progrés

  1. A la zona lateral dreta hi podem trobar el selector de filtres que volem utilitzar per crear la consulta. Només cal pitjar el filtre que vulguem aplicar per poder-lo emprar. Just a sota hi trobem dos botons més: INICI i SORTIR. ‘Inici’ arrenca el procés de representació del mapa i en el cas que hi hagi algun error en la configuració dels paràmetres per a la construcció d’aquestes, el procés s’interromp i ens apareix un missatge amb l’error. I el botó sortir, tanca el plugin.

105

Fig 4. Opcions i ordres principals

  1. Finalment, a la part central, tenim requadre amb dos pestanyes amb les opcions: configuració de la capa de sortida i els filtres.

106
Fig 5. Pestanyes

Per una banda, a la pestanya de ‘Filtres’ podem trobar-hi un requadre amb cinc pestanyes per poder configurar els paràmetres de cada  filtre. Recordem que el filtre es defineix en aquesta pestanya però s’activa pel botó lateral de la figura 4. , s’han de fer les dues coses.

Seguidament els detallarem:

  • El primer que apareix és l’edat. En aquesta pestanya s’ha d’introduir en primer lloc una data segons la qual es vulgui fer l’estudi, per exemple 1 de maig de 2016. Després hem de posar el marge d’edat que volem definir en els camps edat mínima i edat màxima. Si volem fer una taula per les escoles bressol, cal posar 0 i 2 anys en els dos camps respectivament. Seleccionant la opció criteri restrictiu cercarem els nens que encara no hagin fet els 2 anys. En canvi seleccionant el criteri no restrictiu cercarem tots els nens que encara no han fet els tres anys.

107
Fig 6. Filtre per edat

  • El segon criteri que apareix és el gènere. Podem decidir que la nostra cerca sigui en funció d’homes o de dones.

108
Fig 7. Génere

  • A continuació tenim els estudis: podem fer un filtratge segons els estudis que la persona hagi declarat tenir en el padró.

109
Fig 8. Estudis

  • Un altre punt molt important seria l’origen no confondre amb nacionalitat.

Una cosa és el país d’origen, és a dir, on ha nascut la persona en qüestió i l’altre la nacionalitat. La segona és quelcom més complex d’explicar, ja que està subjecte als conceptes de “ius sanguini” i “ius soli”. En el primer cas, quelcom comú als països europeus, africans i la Xina, els nen/a tenen automàtica la nacionalitat d’origen dels pares. Això comporta, per exemple, que un nen/a nascuda de pares marroquins a Mataró tingui nacionalitat marroquina. En el segon cas, si neixes en un país de dret de “ius soli”, obtens la automàticament la nacionalitat del país on neixes. Aquesta és la situació de la majoria de països llatinoamericans.

Llavors, en aquesta finestra podem filtrar la nostre cerca segons diferents criteris:

  1. Pel país d’origen
  2. Per la zona del país d’origen
  3. Per que el seu país d’origen pertanyi a la unió europea.

110

Fig 9. Origen

  • Per últim la nacionalitat, que té els mateixos criteris de filtratge que en l’apartat anterior.

111

Fig 10 . Nacionalitat

Per altra banda, a la pestanya de ‘Configuració de la sortida’ hi trobem diferents opcions per a la visualització dels resultats obtinguts.

112

Fig 11. Configuració de la sortida

Seguidament s’explicaran detalladament de què consta cada element:

  1. En primer lloc escollim la opció amb la qual volem que es faci el càlcul. Podem escollir entre tres opcions:
    • Habitants absoluts: retorna el número absolut dels habitants afectats pel filtre que hem escollit.
    • Habitants relatius: retorna el percentatge d’habitants afectats pel filtre entre el número total de persones que viuen en l’entitat que hem escollit per fer la cerca.
    • Densitat: retorna la densitat de població que està afectada pel filtre en Habitants/km2.
  1. En segon lloc escollim entre dues opcions pel color de la capa de sortida: un color únic per a tota la capa on en podem en podem regular la transparència, o bé un degradat de colors per indicar el major o menor nombre de persones afectades, on podem escollir-ne el número de intervals i el mode del temàtic que vol dir la forma en que es defineix cada rang, igual nombre de incidències , igual amplada de l’interval etc.
  1. En tercer i últim lloc tenim la possibilitat d’afegir etiquetes i modificar-ne algunes de les seves propietats com ara la mida i el color de la lletra i també la visualització en escala. Els valors de l’escala de visualització tenen un valor per defecte per a cada tipus d’entitat, però es poden modificar sense cap mena de problema.

Una vegada aplicats els filtres a la cerca per qualsevol dels criteris explicats anteriorment i configurats els paràmetres de sortida, només cal pitjar el botó “INICI”.

 

Manual d’ús del mòdul ‘Zones d’influència adaptatives’

Aquest document explica el funcionament del plugin de ‘Zones d’influència adaptatives’ per a QGIS.  Per a poder utilitzar-lo, el primer que s’ha de fer és executar el programa QGIS i un cop inicialitzat aquest, cal pitjar la icona següent1

o anar a Complements -> CCU -> Zones d’influència adaptatives i s’obrirà una finestra com la que podem veure a continuació a la imatge.

2

Aquest mòdul el que fa és ajustar la zona d’influència de cada entitat proveïdora d’un servei a la població a la capacitat de cada centre (que s’ha de fixar en la BD prèviament), tenint en compte la densitat de la problació ‘target’ del seu entorn. Aquesta zona d’influència pot ser circular o seguint el Graf de Trams de Carrer.

A continuació es detallaran els diferents components del plugin i quina és la seva funció:

  1. A la part superior, hi ha un barra on s’hi indica l’estat de la connexió i una pestanya desplegable amb les connexions disponibles (ja configurades prèviament) per a realitzar les operacions. Allà n’escollim una.3
  2. En aquesta part escollirem la capa de punts a partir de la qual volem fer la zona d’influència i el color que tindrà.4
  3. Just a sota trobarem tres botons que ens permetran escollir la capa sobre la que volem treballar: Illes, parcel·les o portals.5
  4. En aquesta secció cal introduir un número de iteracions que volem que es realitzin.6
    Hem de tenir present que el programa fa el recalcul del següent radi (o distància) a partir del nombre de persones trobades prèviament dins de la zona i això ho pot fer una vegada (cas de una iteració) o unes quantes, poguent anar refinant l’ajust, però amb augment del temps de càlcul.
  1. En l’apartat de cobertura caldrà dir el percentatge de població sobre el qual volem fer l’estudi. També marcarem el checkBox en el cas que vulguem que es mostri la població no afectada per la zona d’influència. Una vegada realitzada la operació, ens apareixerà el nombre d’habitants no coberts en el requadre blanc, a la part inferior.7
  2. Aquí cal introduir el radi inicial a partir del qual treballarem amb les entitats puntuals. Es una radi inicial mitjà a partir del qual i segons la capacitat de cada centre s’assigna el radi inicial particular de cada un.8
  3. En aquest apartat es pot escollir zones d’influència de graf si se selecciona l’opció ‘fer servir trams’. En cas contrari, les zones d’influència són circulars. En cas de fer servir trams, podem fer que es vegi el dibuix del graf marcan el checkBox corresponent. També es pot modificar el radi de la zona d’influència canviant el valor en el textBox.9
  4. En el cas que la opció de ‘fer servir trams’ estigui habilitada, cal escollir un graf sobre la qual treballar, mitjançant la pestanya desplegable. També podem escollir el color de l’àrea d’influència i modificar el traç amb la pestanya desplegable inferior.10
  5. En últim lloc, a la part inferior de la finestra podem trobar la versió de la plugin amb la que estem treballant i dos botons: ‘INICI’ per començar el processament de les dades i ‘SORTIR’ per tancar el plugin.11

 

Manual de preparació de l’entorn d’usuari QGIS

En aquesta secció s’expliquen els passos a seguir per instal·lar el programa QGIS en el nostre entorn. El primer pas a seguir és anar al lloc web de QGIS (www.qgis.org) i dirigir-se a l’apartat de descàrregues (http://qgis.org/es/site/forusers/download.html). Allà es podran trobar dues versions del programa: la versió més recent i la de llarg termini. Qualsevol de les dues és perfectament vàlida, tot i que si l’usuari del programa treballa per una empresa o institució pública, recomanem la versió de llarg termini. Un cop escollida la versió, només cal descarregar-la.27

Un cop descarregada, cal instal·lar-la en el nostre equip. Només cal que fem doble clic a l’arxiu que hem descarregat prèviament. Llavors s’executarà l’instal·lador i només cal seguir els passos que ens indica. Un cop completat aquest procés, ja podrem executar el QGIS.

Per poder instal·lar els plugins que s’utilitzen per tractar les dades cal anar a Complementos à Administrar e instalar complementos… i ens apareixerà una finestra com la següent:28 Anem a la pestanya de configuració.29

Marcarem la opció de “comprovar actualitzacions a l’inici”, que es troba a la part superior, i posteriorment escollirem la periodicitat de l’acció amb les diferents opcions del desplegable que podem trobar just a sota.
També és necessari afegir el repositori on es troben els plugins necessaris per treballar. Cal prémer el botó Añadir…, que es troba a la part inferior, i ens apareixerà la finestra que es mostra a continuació.30

En el camp de nom cal afegir un nom com per exemple “Plugins CCU Tecnocampus” i en el camp de la URL cal posar http://geoportalccu.tecnocampus.cat/plugins.xml. Un cop fet, acceptem i tornem a l’apartat de Todos. A la part superior hi podrem trobar un barra de cerca on buscarem els plugins necessaris: TaulaResum, Activitats Econòmiques i ZI-GTC.

Un cop els trobem, pitgem sobre ells i finalment només caldrà instal·lar-los en el nostre equip.31

Aleshores només cal tancar la finestra i afegir les connexions a la base de dades per a poder treballar amb el QGIS. Per últim només ens farà falta configurar la connexió amb la base de dades. Per poder-ho fer cal seguir els següents passos:

Primer cal cercar a la barra d’eines en el lateral esquerra de la nostra pantalla una icona com aquesta 32Un cop ho haguem fet, ens apareixerà una finestra com la de la figura 1. En allà cal prémer el botó “Nueva”, tal i com està senyalitzat a la mateixa figura. Posteriorment ens ha d’aparèixer una finestra com la de la figura 2. En allà cal introduir els camps necessaris per configurar la connexió: usuari, nom de la base de dades, servidor i contrasenya. Una vegada fet, només es necessari prémer el botó Acceptar de les dues finestres mencionades prèviament i ja tindríem l’entorn preparat per treballar.

33Figura 134

Figura 2

Manual d’ús del mòdul ‘ZI-GTC’

Aquest post explica el funcionament del plugin de ‘ZI-GTC’ per a QGIS.  Per a poder utilitzar-lo, el primer que s’ha de fer és executar el programa QGIS i un cop inicialitzat aquest, cal pitjar la icona següent17 o anar a Complementos -> CCU -> Càlcul de població afectada i s’obrirà una finestra com la que podem veure a continuació a la imatge.18_2

A continuació es detallaran els diferents components del plugin i quina és la seva funció:

  1. Comencem per la part superior, on hi trobem una pestanya desplegable i un requadre. A la pestanya s’escull la connexió amb la que volem treballar, i que prèviament hem configurat en el QGIS. En el requadre indica l’estat de la connexió.19
  2. En segon lloc, trobem una pestanya desplegable on hi podem seleccionar la entitat puntual sobre la qual volem treballar.20
  3. Just a sota, podem trobar una altra pestanya desplegable. En aquesta ocasió tindrem la possibilitat d’escollir la xarxa de carrers sobre la qual volem treballar. Per poder utilitzar la capa, cal que disposem d’accés a una taula auxiliar amb els vèrtex. Cada vegada que seleccionem una capa de graf, el plugin s’encarrega de comprovar que la capa auxiliar hi sigui. En el cas que no hi sigui, un missatge apareixerà per tal d’informar de la situació a l’usuari.21
  1. En quart lloc, hi ha el menú per seleccionar el mètode de treball: primer trobem un desplegable per treballar sobre la distància o el temps. Just a dreta hi trobem dos checkBox que només s’activen quan en el desplegable hi ha escollida la opció de ‘Temps’ i que s’utilitzen per indicar si volem utilitzar el cost invers i el de nusos. Després hi ha un camp per omplir text on l’indicarem amb un número la distància o el temps amb la que volem fer el buffer, i en últim lloc hi ha una pestanya desplegable on hi podrem escollir el camp de la taula de la xarxa de carrers que s’utilitzarà com a camp de distància o temps, segons s’hagi escollit.22
  1. Just després del mètode de treball, hi trobem les opcions d’aparença del graf. Primer hi ha un checkBox que habilita el botó amb el qual s’escull el color i una pestanya on s’escull el gruix del traç. A més a més, hi ha un camp on hi podem indicar el radi en metres de la zona d’influència de l’entorn del graf.23
  1. Seguidament hi ha una pestanya on podem escriure el títol de la llegenda. En el moment en què escollim una entitat puntual, aquest camp s’actualitzarà automàticament per “<nom de la entitat>”. Tot i això, el títol pot ser el que nosaltres vulguem.24
  1. Després d’això, trobarem l’apartat on seleccionarem el mètode per treballar amb la població. Primer trobarem un checkBox on indicarem si volem treballar amb la població. En cas afirmatiu, ens apareixerà el menú amb les opcions just a sota. En aquest menú hi apareixen 3 botons on indicarem si volem treballar amb les illes, parcel·les o portals. En la part inferior hi ha una etiqueta blanca on hi apareix el percentatge d’habitants afectats per la zona d’influència del càlcul, un cop realitzat. A la dreta hi ha un checkBox on hi indicarem si volem que es mostri la població exclosa.25
  2. Finalment, a la part inferior de la finestra hi ha dos botons: el de ‘SORTIR’ i el de processar o ‘INICI’. El de SORTIR serveix per tancar la pestanya. El botó ‘INICI’ serveix per processar la consulta que li hem indicat amb els elements que acabem de veure. Segons les opcions que li haguem indicat, ens apareixerà un resultat o un altre. En el cas que alguna de les dades o la connexió no sigui correcta, el programa advertirà de la incidència a l’usuari. Un cop aquesta sigui resolta, l’usuari podrà executar el programa amb normalitat.26

Manual d’ús del mòdul ‘TaulaResum’

Aquest document explica el funcionament del plugin de ‘Taula Resum’ per a QGIS.  Per a poder utilitzar-lo, el primer que s’ha de fer és executar el programa QGIS i un cop inicialitzat aquest, cal pitjar la icona de la figura 1 o anar a Complementos -> CCU -> Taula Resum i s’obrirà una finestra com la que podem veure a la figura 2.

icona figura 1

inici figura 2

A continuació es detallaran els diferents components del plugin i quina és la seva funció:

  1. A la part superior esquerra, hi ha un rectangle on hi indicarem sobre quines capes volem treballar: illes, parcel·les, portals o totes tres alhora.met-treb
  2. A la part superior central, hi ha una pestanya desplegable amb les connexions disponibles (ja configurades prèviament) per a realitzar les operacions. Allà n’escollim una i seguidament la barra que hi ha just a sota n’indicarà l’estat.connexio
  3. A la zona lateral dreta hi podem trobar el selector de filtres que volem utilitzar per crear les taules. Només cal pitjar el filtre que vulguem aplicar per poder-lo emprar. Just a sota hi trobem dos botons més: crear taula i sortir. Crear taula inicia el procés de creació de taules i en el cas que hi hagi algun error en la configuració dels paràmetres per a la construcció d’aquestes, el procés s’interromp i ens apareix un missatge amb l’error. I el botó sortir, tanca el plugin.filtres
  4. Finalment, a la part central, tenim requadre amb cinc pestanyes amb les opcions per poder configurar els paràmetres de cada filtre. Seguidament els detallarem:
    • El primer que apareix és l’edat. En aquesta pestanya s’ha d’introduir en primer lloc una data segons la qual es vulgui fer l’estudi, per exemple 1 de maig de 2016. Després hem de posar el marge d’edat que volem definir en els camps edat mínima i edat màxima. Si volem fer una taula per les escoles bressol, cal posar 0 i 2 anys en els dos camps respectivament. Seleccionant la opció criteri restrictiu cercarem els nens que encara no hagin fet els 2 anys. En canvi seleccionant el criteri no restrictiu cercarem tots els nens que encara no han fet els tres anys.

pest

    • El segon criteri que apareix és el gènere. Podem decidir que la nostra cerca sigui en funció d’homes o de dones.

pest2

    • A continuació tenim els estudis: podem fer un filtratge segons els estudis que la persona hagi declarat tenir en el padró.

pest3

  • Un altre punt molt important seria l’origen no confondre amb nacionalitat. Una cosa és el país d’origen, és a dir, on ha nascut la persona en qüestió i l’altre la nacionalitat. La segona és quelcom més complex d’explicar, ja que està subjecte als conceptes de “ius sanguini” i “ius soli”. En el primer cas, quelcom comú als països europeus, africans i la Xina, els nen/a tenen automàtica la nacionalitat d’origen dels pares. Això comporta, per exemple, que un nen/a nascuda de pares marroquins a Mataró tingui nacionalitat marroquina. En el segon cas, si neixes en un país de dret de “ius soli”, obtens la automàticament la nacionalitat del país on neixes. Aquesta és la situació de la majoria de països llatinoamericans. Llavors, en aquesta finestra podem filtrar la nostre cerca segons diferents criteris:
    1. Pel país d’origen
    2. Per la zona del país d’origen
    3. Per que el seu país d’origen pertanyi a la unió europea.

pest4

    • Per últim la nacionalitat, que té els mateixos criteris de filtratge que en l’apartat anterior.

pest5

Una vegada aplicats els filtres a la cerca per qualsevol dels criteris explicats anteriorment, ja podem crear la teva taula resum, seleccionant tots els botons dels filtres sobre els quals volem fer la cerca i posteriorment pitjant al botó “crear taula”.

Creació del plugin ‘Taula Resum’

Introducció

En aquest post es podrà llegir els passos que cal seguir per a construir el plugin ‘Taula Resum’ per a QGIS.

En el plugin ‘TaulaResum’ cal destacar el canvi de filosofia que s’ha produït amb el canvi de GeoMedia, el qual treballa amb bases de dades locals, al QGIS. En canvi amb aquest últim hem passat a treballar amb un topologia client-servidor, que permet que tots els usuaris que disposin de les credencials podran accedir a les bases de dades sempre que vulguin i des de qualsevol lloc. I només el cal tenir el mòdul QGIS amb el mòdul instal·lat i podran treballar.

Sempre que fem referència a qualsevol element de l’entorn de programació o QGIS, aquest és explicat en el post sobre ‘com preparar l’entorn’.

Procés de creació

Disseny de la interfície

El primer que vam fer va ser la creació de la interfície del plugin. Un cop hem creada l’estructura del plugin amb el ‘Plugin Builder’, vam obrir l’arxiu amb format *.ui amb el Qt Designer i començarem amb la creació. Primer va caldre posar les pestanyes més exteriors (QTab Widget) i dimensionar-lo de manera adequada. Al voltant, vam afegir els elements que ajudaran a escollir els filtres, els mètodes de treball, l’elecció de la connexió i els botons per crear la taula i sortir. Un costum que tenim és el de posar una etiqueta amb la versió de la plugin, ja que ajuda a la identificació de quines són les funcions que pot tenir un plugin. Els plugins poden patir diferents actualitzacions i les funcions poden variar. En el cas de que hi hagi un error en una versió que no és la més recent, l’etiqueta facilita la detecció de l’error i es pot corregir ràpidament. El resultat de tot això es pot veure a la figura 1.

p1
Figura 1

Un vegada fet, vam afegir els elements de dintre les cinc pestanyes dels filtres. Finalment, el que vàrem fer és donar-li un nom que ajudi a la identificació de cada element interactiu de la interfície. Aquest serà el nom que utilitzarem per poder-hi interactuar dins el codi principal que controlarà el plugin. A la figura 2 es pot veure com quedaria la finestra amb la pestanya principal omplerta.

p2
Figura 2

Recomanem que siguin el més explícits possible ja que es podran evitar errades i també ajudaran a facilitar la comprensió del codi, com per exemple ‘ComboConnexio’ en referencia a la pestanya desplegable on s’hi indicarà la connexió que volem escollir.

Interacció amb les Bases de Dades

Per a poder realitzar qualsevol acció sobre la base de dades cal primer saber el nom d’usuari, nom de la base de dades, servidor i contrasenya. És recomanable guardar aquestes dades en variables globals i aconseguirem accedir-hi des de qualsevol funció en qualsevol moment. També cal fer l’import de la llibreria psycopg2 (import psycopg2) al principi del codi.

Per establir la connexió hem utilitzat el codi següent:

#Connexio
nomBD = nomBD1.encode('ascii','ignore')
usuari = usuari1.encode('ascii','ignore')
servidor = host1.encode('ascii','ignore')
contrasenya = contra1.encode('ascii','ignore')
try:
  estructura="dbname='"+nomBD+"' user='"+usuari
  +"' host='"+servidor+"' password='" + contrasenya + "'"
  conn = psycopg2.connect(estructura)
  cur = conn.cursor()
  cur.execute(Sentencia_sql)
  resultat = cur.fetchall()
  conn.close()

Utilitzarem la comanda execute(<sentencia SQL>) per realitzar la consulta. Per poder passar els resultats i per poder-los tractar utilitzarem la comanda fetchall() que retorna una matriu amb tots ells. És important tancar la connexió un cop haguem fet les consultes necessàries.

En el cas que ens ocupa, hi ha tres pestanyes del grup de pestanyes principals que necessiten llegir dades de la BD i exposar-les en els seus respectius camps. Com per exemple en la pestanya ‘Estudis’ hi ha un requadre amb una llista (QListWidget) on cal llistar-hi tots els estudis que hi pot haver i que tenim emmagatzemats a la taula del Padró. El que busquem nosaltres és una consulta que ens retorni els diferents tipus d’estudi que hi ha i ho hem resolt amb la sentencia SQL següent:

select distinct("HABNIVINS"),"NINDESCRI" from "public"."Padro" order by 2;

El camp “HABNIVINS” és l’identificador de l’estudi i el “NINDESCRI” és el nom de l’estudi que apareixerà al requadre de la llista. L’identificador de l’estudi el vincularem a l’estudi per mitjà del ToolTip(), que posteriorment ens facilitarà la construcció de la consulta que l’usuari desitja.

Connexió dels botons

Per poder vincular i recollir els estats dels elements de la interfície cal fer els següents passos. Primer de tot cal fer from TaulaResum_dialog import TaulaResumDialog per tal de poder vincular el fitxer de la interfície amb el codi.

Aleshores, a la funció init(), que ja ve creada pel Plugin Builder, hi posem les següents comandes:

self.dlg = TaulaResumDialog()
self.dlg.btoNACIONALITAT.toggled.connect(self.on_click_MarcarBotoNACIONALITAT)
self.dlg.comboConnexions.currentIndexChanged.connect(self.on_Change_ComboConn)

El primer inicialitza el diàleg amb el què hem d’interaccionar. Les altres dos activen les seves funcions respectives cada vegada que el valor que tinguin variï. Segons el tipus d’element que sigui, es pot canviar l’aparença o carregar elements per pantalla.

Cada element de la interfície ha de tenir una funció vinculada a ell per tal de que el codi sigui capaç de veure en quin estat està.

Programació dels efectes dels botons

Cada vegada que l’usuari interaccioni amb un dels elements de la interfície es produirà un efecte. En aquest apartat s’introduirà un exemple d’aquest tipus de comportament. Per l’exemple utilitzarem el codi següent:

def on_click_MarcarBotoEDAT(self, clicked):
if clicked:
  self.dlg.btoEDAT.setStyleSheet('background-color: #7fff7f')
  self.dlg.GrupPestanyes.setCurrentIndex(0)
else:
  self.dlg.btoEDAT.setStyleSheet('background-color:rgb(227,227,227)')

Aquesta funció es dedica a controlar l’aspecte del botó del filtre d’Edat. Si és clicat, canvia de color de fons i mostra la pestanya del filtre d’edat per tal que l’usuari esculli els paràmetres que vol analitzar. Altrament, li torna a posar el color de desactivat.

A més a més, cal tenir en compte que els elements de la interfície tenen memòria i que un cop els hi canviem l’estat, creem la taula i tanquem el plugin, una vegada el tornem a obrir, conserven el seu estat anterior. Això fa necessària una funció que posi aquests elements en el seu estat inicial cada vegada el que el plugin s’obri i s’utilitzi.

En el nostre cas, la majoria d’elements de la interfície tenen efectes molt senzills com el que hem explicat fa un moment però hi ha un botó que realitza una funció més complexa: crear la taula resum. Aquesta funció recull totes les dades que l’usuari ha introduït sobre els filtres que desitja analitzar, comprova que no hi hagi cap error o que falti alguna dada, es connecta amb la base de dades i escriu el resultat en fitxers de text .csv per a que l’usuari els pugui utilitzar sempre que vulgui.

Un altre punt important és el control d’errors. Cada cop que es produeixi un resultat no esperat s’ha controlar i avisar a l’usuari del que ha passat i indicar-li els passos per corregir l’errada. En el nostre cas, els errors més comuns es produeixen a l’hora de crear les consultes: l’usuari no introdueix correctament les dades de la consulta. Però també pot ser que la connexió no estigui disponible o que l’usuari no tingui els permisos adequats de lectura.

Quan es tracta d’un error relacionat amb la connexió s’adverteix a l’usuari per mitjà d’una etiqueta que n’indica l’estat. En el cas de tenir problemes amb la consulta, apareixen finestres amb el missatge d’error.

Prova del plugin

Una vegada hem programat totes les funcions, cal comprovar que els resultats són els esperats. Per fer-ho, cal que utilitzem el GeoMedia amb el plugin que s’utilitzava anteriorment i comprovar que si posem les mateixes variables d’entrada obtenim el mateix resultat.

Cal que el procés sigui exhaustiu perquè cal revisar cadascuna de les funcions que s’han implementat. S’han de fer totes les combinacions possibles i comprovar que el número de resultats ha sigut igual. En el cas que no ho sigui, s’han de comparar els codis i veure el punt on difereixen.

Preparació de l’entorn de treball per la creació d’un plugin per a QGIS

Introducció

En aquest post es podran llegir els passos que cal seguir per preparar un entorn de treball per a construir un plugin per a QGIS. Aquesta configuració no és la única proposta possible, sinó que és la que hem escollit nosaltres en particular.

El primer que cal fer és pensar una bona planificació del plugin: les funcionalitats que es volen incorporar, la tria i disposició dels elements que integraran la interfície, les fonts d’informació sobre les qual es volen realitzar els càlculs i quin tipus de sortides s’oferiran a l’usuari són alguns dels punts que cal tenir en compte a l’hora de la organització.

La interfície cal que sigui el més clara i intuïtiva possible per tal que amb unes simples instruccions l’usuari sigui capaç d’usar el plugin sense cap mena de problema. L’altre aspecte que cal tenir amb compte és el format de les fonts d’informació. Segons quines fonts no són ràpides a l’hora de ser tractades. Degut a aquest fet, recomanem treballar amb taules PostgreSQL ja que permet tractar un gran nombre de dades i fer funcions complexes en un període de temps molt reduït.

En el cas de les capes o taules de sortida, les sortides que no tinguin geometria és preferible guardar-les directament a la base de dades. Altrament, les sortides que si que tinguin geometria seria recomanable guardar el resultat de la consulta a la BDD i a partir d’allà generar un arxiu temporal .SHP per tal de que l’usuari pugui veure el resultat per pantalla en el projecte.

També cal instal·lar el programa ‘pgAdmin’ per tal de poder administrar les bases de dades des de les quals podrem extreure i afegir les dades que necessitem o obtinguem després dels nostres càlculs. Allà també podrem administrar els rols i permisos que volem donar en els usuaris.

Preparació i posta apunt

Entorn de programació

Per a poder crear un plugin de QGIS cal, com es obvi, el QGIS i un IDE. Un IDE és l’entorn de programació necessari per a poder programar el plugin internament. En el nostre cas, hem escollit l’IDE anomenat ‘Eclipse’ ja que és un entorn fàcil i intuïtiu, i té diverses funcionalitats d’entre les quals dues que són de gran utilitat: parlem d’un servidor per poder debugar mentre executem el plugin en el QGIS i un controlador de versions.

L’extensió per debugar remotament es connecta amb un altre plugin del QGIS(posteriorment serà explicat) i permet seguir l’execució del programa en temps real i tens la possibilitat de posar punts d’interrupció per tal de poder detectar possibles errors. A més a més, disposa d’una graella on s’hi pot veure el valor de les variables que són utilitzades en el codi en el moment en què parem l’execució.

La segona extensió recomanada és el controlador de versions, ja que està pensat per fer més fàcil i eficient la construcció manteniment d’aplicacions que tenen un gran nombre d’arxius amb codi font. Entre d’altres funcions permet fer un seguiment exhaustiu de les etapes que ha seguit el codi. Tens la possibilitat tornar a versions anterior en cas que hagis comès un error i seguir des de l’última versió correcta. També facilita el treball amb grup ja que permet ajuntar codi de dues o més persones fàcilment i d’aquesta manera es pot coordinar el treball que s’ha realitzat.

Els plugins de QGIS estan programats en Python, així doncs serà imprescindible instal·lar Python en el nostre equip en el cas que no ho estigui i també afegir l’extensió ‘PyDev’ a l’Eclipse.

Seguidament, explicarem pas a pas la instal·lació de tots el programes i extensions que s’han mencionat prèviament.

Comencem per la instal·lació del ‘Eclipse’. En el nostre cas ens hem descarregat la versió 4.5.2 de l’Eclipse Mars. En el cas de que l’equip no disposi de Java instal·lat, caldrà instal·lar-lo prèviament, ja que sinó l’Eclipse no funcionarà. Recomanem instal·lar la última versió.
Una vegada instal·lat, cal afegir les extensions necessàries. Comencem pel ‘PyDev’. Cal anar a Help a Install New Software (figura 1) i ens apareixerà una finestra com la de la figura 2.

1

Figura 1

2Figura 2

Pitgem el botó ‘Add’, que està ressaltat en la figura 2, i ens apareixerà un finestra com la de la figura 3.
3

Figura 3

Només cal omplir els dos camps buits: el primer amb el nom PyDev i el segon amb el link següent http://pydev.org/updates. Un cop fet, pitgem el botó OK per incorporar el repositori.

Després cal escollir PyDev en el desplegable de ‘Work with’ (figura 2 o 4)  i es carregaran les extensions que hi ha disponibles en el servidor. Un cop s’hagin carregat, escollim la opció del PyDev i pitgem el botó ‘Next’ per procedir a la instal·lació. Tot seguit haurem d’acceptar els termes de la llicencia i pitjar el botó ‘Finish’ per tal de finalitzar. Aquesta extensió porta incorporat la funció amb el servidor per debugar.

Per tal d’instal·lar la extensió de control de versions cal anar a la mateixa finestra que la figura 2 i a la pestanya desplegable cal escollir la opció <Mars – http://download.eclipse.org/releases/mars>  i en camp de filtre posar ‘Git’ tal i com es mostra en la figura 4.
4

Figura 4

Cal escollir les tres primeres opcions. La quarta és opcional: depèn de si interessa treballar amb GitHub. Un cop seleccionades les opcions, cal instal·lar-les com hem fet amb el PyDev.

Aquí acabaria la preparació de l’IDE.

QGIS

Aquests serien els requisits per poder treballar amb l’Eclipse. Seguidament explicaré les plugins que són necessaris per treballar amb el QGIS.

El primer pas per preparar l’entorn és la descarrega del QGIS des de la web del programa http://www.qgis.org/ca/site/forusers/download.html. La versió que nosaltres utilitzem és la 2.14, tot i això, qualsevol versió posterior hauria de funcionar sense cap mena de problema. Un cop descarregat, cal instal·lar-lo en el nostre equip.

Després de la instal·lació, és necessari obrir el programa QGIS i procedirem a instal·lar els plugins que comentarem seguidament.

Començaré per l’esmentat anteriorment, el plugin ‘Remote Debug’ que ens ajuda a connectar el QGIS amb el nostre IDE per tal de poder controlar l’execució i detectar possibles errors. Facilita molt la tasca de trobar errors i agilitza la codificació del plugin.

També hi ha el ‘Plugin Builder’. Aquest plugin crea una estructura bàsica o plantilla per a fer un plugin. Es parteix d’aquesta base i a partir d’allà es comença a programar el plugin amb el nostre IDE, que posteriorment l’importarem.

L’últim plugin a instal·lar és el ‘Plugin Reloader’. La seva funció és refrescar el connector mentre estem debugant errors i estem fent canvis en el codi. Si no ho féssim, els canvis en els codi no quedarien reflectits a l’execució.

Per poder instal·lar aquests cal seguir els passos següents: primer cal anar a Complementos à Administrar e instalar complementos com en la figura 5.
5

Figura 5

I seguidament ens apareixerà una finestra com la de la figura 6.
6

Figura 6

Abans de tot, cal anar a la pestanya de ‘Configuració’ i marcar la opció de mostrar els complements experimentals com en la figura 7.
7

Figura 7

Un cop marcada l’opció, tornem a la pestanya de ‘Todos’, com a la figura 6 i a la casella de buscar, busquem els plugins pel seu nom: Plugin Builder, Plugin Reloader i Remote Debug. Una vegada els hem trobat, pitgem el botó de instal·lar com el de la figura 8.
8

Figura 8

Ja instal·lats els plugins, apareixeran a la nostra barra d’eines del menú (figura 9).
9

Figura 9

L’últim detall que cal solucionar és indicar al Remote Debug el camí on hi ha el servidor per debugar del nostre IDE.

Per fer-ho cal pitjar la icona del plugin (és la que apareix a la dreta a la figura 9) i ens apareixerà una imatge com la de la figura 10.
10

Figura 10

En el camp pydevd path cap posar-hi el path següent: a la carpeta on hi ha guardat l’eclipse à Plugins à org.python.pydev_X.X.X.201608171824 à pysrc on X varia segons la versió que escollim.

pgAdmin

Per instal·lar el pgAdmin el primer que cal fer és descarregar-se l’aplicació des del lloc web que del programa https://www.pgadmin.org/download/. Allà només caldrà descarregar-se el que s’adequa a la nostra plataforma.

Un cop fet, només cal executar l’arxiu que ens hem descarregat i seguir els passos que indica.

Connexions a la base de dades

Per tal de poder configurar la connexió amb la base de dades cal seguir els següents passos:

Primer cal cercar a la barra d’eines en el lateral esquerra de la nostra pantalla una icona com aquesta 18
Un cop ho haguem fet, ens apareixerà una finestra com la de la figura 11. En allà cal premer el botó “Nueva”, tal i com està senyalitzat a la mateixa figura. Posteriorment ens ha d’apareixer una finestra com la de la figura 12. En allà cal introduir els camps necessaris per configurar la connexió: usuari, nom de la base de dades, servidor i contrasenya.
20

Figura 11

19

Figura 12

Funcionament

Creació del plugin

Comencem pel plugin Builder, ja que serà el primer que farem servir. Primer de tot, crearem un projecte i introduirem totes les dades que ens demana (figura 11).
11

Figura 11

Entre les dades que ens demana, li entrarem un camí on guardarà el plugin. És recomanable posar-lo al path següent: Disc Local (C:) à Usuaris à (Usuari on estigui el QGIS) à .qgis2 à python à plugins, ja que en aquella carpeta és on es guarden els plugins instal·lats.

Seguidament, copiem el camí i obrim l’eclipse. Anem a File à Import… i ens apareixerà una pestanya com la de la figura 14.
12

Figura 14

Pitjem l’opció de ‘Existing Projects into Workspace’ i ens mostrarà un pantalla com la de la figura 15.
13

Figura 15

Copiem el camí en el camp del directori arrel i pitjem el botó de ‘Browse..’. Un cop fet, es carregaran el projectes que hi hagi a la carpeta en requadre blanc. Llavors només caldrà seleccionar-lo i importar-lo mitjançant el botó Finish.

Finalment obrim el projecte i comencem a treballar a l’arxiu [nom del projecte].py que ja s’haurà creat prèviament.

Creació de la interfície

En el projecte que nosaltres hem creat, hi haurà un arxiu .ui que és la base de la nostre interfície. Aquest fitxer el podem editar amb el programa Qt Designer que s’instal·la automàticament quan instal·lem el QGIS en el nostre equip.

Per tant, per editar la nostra interfície obrim aquest programa i obrim el l’arxiu que tenim en nostre projecte.

El Qt Designer disposa de totes del eines que necessitem a la barra lateral esquerra i des d’allà incorporem els elements en el nostre disseny arrossegan-los fins on els vulguem posar.

Servidor per debugar

El que primer cal fer és obrir el ‘Eclipse’ i fer el seguent:

Anar a Window à Prespective à Open Prespective à Other com a la de la figura 16.
14

Figura 16

I seguidament se’ns obrirà una finestra com la de la figura 17.
15

Figura 17

Seleccionem Debug i seleccionem OK. A la barra d’eines superior ens mostrarà unes eines com les de la figura 18.
16

Figura 18

Cal pitjar el tercer botó 17 i haurem encès el servidor per debugar. Un cop fet, cal obrir el GIS i obrir el plugin del Remote Debug, que té una icona similar a la anterior. I ens apareixerà una finestra com la figura 10. Aleshores, només cal pitjar el botó de Connect i si hem configurat bé el complement, ens sortirà un missatge indicant que s’ha connectat amb el servidor.

Primers passos en el rutatge al QGIS

En aquest post mostraré els passos que he hagut de seguir per tal de crear el primer dels mòduls que utilitza funcions de rutatge en el QGIS. En aquest cas, volem traslladar el mòdul que calcula els 3 camins a les escoles bressol i llars d’infants més pròximes a cada portal de la ciutat de Mataró. En primer lloc presento les capes amb les quals es treballa. Llavors segueixo amb la creació del mòdul i la seva utilització.

Capes de treball

Actualment amb el GeoMedia treballem amb bases de dades de Microsoft Access majoritàriament. Aquestes incorporen tot tipus de dades, ja sigui taules amb informació sobre el padró o el cadastre, que no estan georeferenciades, o capes de punts, línies o polígons com poden ser els mapes de carrers, illes, cruïlles i serveis públics de la ciutat. Les dades en aquest format ens permeten una gran versatilitat d’ús i facilitat tan en l’ús com en la creació, modificació i eliminació. També són fàcilment exportables a qualsevol altre tipus de format per seguir treballant. Ocasionalment també treballem amb arxius SHAPE.

El QGIS permet gestionar formats raster i vectorials a través de les biblioteques GDAL i OGR, així com altres bases de dades. Una biblioteca GDAL i OGR és un conjunt de programes que estan formats per comandes, cada un amb moltes possibilitats d’ús.

Les capes més comunes amb les quals hem treballat són el Vector Layer, on utilitzem arxius SHAPE (.shp), i Delimited Text Layer on utilitzem arxius CSV (.csv).

Ambdos tipus de dades poden ser modificats fàcilment: tan crear, inserir, modificar o eliminar objectes i/o camps, la qual cosa els fa idonis treballar amb aquests tipus d’arxius ja que si volem fer proves per poder desenvolupar les consultes o els mòduls, ens són de gran utilitat.

Procés de creació

Per crear la interfície gràfica s’utilitza un creador de models que porta incorporats una sèrie de funcionalitats. Haurem d’anar a la caixa d’eines de processat i allà “crear model nou”.
fuc
I seguidament se’ns obra la següent finestra:
nou
Les dues imatges següents corresponen a la columna de l’esquerra de l’anterior imatge hi tenim tots els tipus de paràmetres amb els quals podem treballar, i si canviem a la pestanya de algoritmes, trobem totes les funcions amb les quals podrem treballar sobre les dades. Cal veure el funcionament d’aquestes per tal de poder-les utilitzar correctament.

fuc

dades

 

 

 

 

 

Seguidament, vam afegir el tipus de dades i buscar les funcionalitats adequades per construir la interfície gràfica.

dades2
Una vegada introduïdes les capes, va ser necessari buscar una funcionalitat que convertís el tipus de geometria dels objectes de les capes de punts ja que van sorgir problemes per què obteníem una capa buida. En el nostre cas vam utilitzar el mòdul “Convert Geometry type”.
convert
Seguidament vam començar la recerca d’entre les funcionalitats alguna que calculi una ruta entre dos punts. No existeix una funcionalitat que faci tal funció, així que vam seguir la cerca. Vam seguir buscant entre els plugins que permet instal·lar el QGIS. Vam trobar-ne un que si que fa aquesta funció però no ens era d’utilitat ja que no hi ha cap manera d’automatitzar el procés de càlcul de les distàncies. Això doncs, vam recórrer a l’últim recurs: crear un script en Python que realitzi la funció.

Vam trobar un script que calculava la ruta entre dos punts sobre un graf de carrers. Aquest script utilitza una funció interna de la API de QGIS anomenada “dijkstra” que et retorna un camí. El següent script és el que vam trobar a Internet:

##ruta=name
##ruta=name
##points=vector
##network=vector
##output=output vector

#Algorithm body
#==================================
from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *
from processing.tools.vector import VectorWriter

point_layer = processing.getObject(points)
network_layer = processing.getObject(network)
writer = VectorWriter(output, None, [QgsField("order", QVariant.Int)],
network_layer.dataProvider().geometryType(), network_layer.crs())

# prepare graph
vl = network_layer
director = QgsLineVectorLayerDirector(vl,-1,'','','',3)
properter = QgsDistanceArcProperter()
director.addProperter( properter )
crs = vl.crs()
builder = QgsGraphBuilder( crs )

# prepare points
features = processing.features(point_layer)
point_count = point_layer.featureCount()
points = []
for f in features:
  points.append(f.geometry().asPoint())
tiedPoints = director.makeGraph( builder, points )
graph = builder.graph()
route_vertices = []

for i in range(0,point_count-1):
    progress.setPercentage(int(100 * i/ point_count))
    
    from_point = tiedPoints[i]
    to_point = tiedPoints[i+1]
    from_id = graph.findVertex(from_point)
    to_id = graph.findVertex(to_point)

    (tree,cost) = QgsGraphAnalyzer.dijkstra(graph,from_id,0)
    if tree[to_id] == -1:
        continue # ignore this point pair
    else:
        #collect all the vertices between the points
        route_points = []
        curPos = to_id 
        while (curPos != from_id):
            route_points.append(graph.vertex(
graph.arc(tree[curPos]).inVertex()).point())
           curPos = graph.arc( tree[ curPos ] ).outVertex()
        route_points.append(from_point)
    # add a feature
    fet = QgsFeature()
    fet.setGeometry(QgsGeometry.fromPolyline(route_points))
    fet.setAttributes([i])
    writer.addFeature(fet)
del writer

Un cop testejat i debuguejat, vam començar amb la modificació de l’script per tal d’obtenir el resultat desitjat. Aquest va ser un procés complex ja que s’havia de canviar el programa per dins. Després de forces entrebancs en el procés vam aconseguir un resultat força aproximat al que volíem. Van caldre forces hores per acabar de depurar el codi ja que teníem petits errors que costaven de detectar.

##dintreilla=vector
##EscolesBressol=vector
##network=vector
##output=output vector
#Algorithm body
#==================================
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import time
from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *
from processing.tools.vector import VectorWriter

start_time = time.time()
network_layer = processing.getObject(network)

inputPoint = processing.getObject(dintreilla)
features = processing.features(inputPoint)

inputPoint2 = processing.getObject(EscolesBressol)
features2 = processing.features(inputPoint2)

di= 0
eb= 0
id = -1
fields = []
fields.append (QgsField("ID", QVariant.Int))
fields.append (QgsField("Length", QVariant.Int))
fields.append(QgsField("From_Node",QVariant.String))
fields.append(QgsField("To_Node",QVariant.String))

writer = VectorWriter(output, None, 
fields, network_layer.dataProvider().geometryType(), network_layer.crs())

#Per buscar els 3 millors de cada punt

for fea1 in features:
    di=di+1
    #xx = fea1.geometry().asPoint().x()
    #yy = fea1.geometry().asPoint().y()
    #pStart = QgsPoint(xx, yy)
    from_node = fea1.attributes()
    inici = from_node[0]
    print inici
    fea2=None
    features2 = processing.features(inputPoint2)
    eb = -1
    vec = []
    for fea2 in features2:
        eb=eb+1
        id  = id + 1
        nom = fea2.attributes()
        desti = nom[2]
       #---------------------------------------------------------------
        vl = network_layer
        director = QgsLineVectorLayerDirector(vl,-1,'Cost','Cost_inver','',3)
        properter = QgsDistanceArcProperter()
        director.addProperter(properter)
        crs = vl.crs()
        builder = QgsGraphBuilder(crs ,True,0.001)

        # prepare points
        points = []
        points.append(fea1.geometry().asPoint())
        points.append(fea2.geometry().asPoint())

        tiedPoints = director.makeGraph( builder, points )
        graph = builder.graph()

        route_vertices = []
        for i in range(0,2-1):
            from_point = tiedPoints[i]
            to_point = tiedPoints[i+1]

            from_id = graph.findVertex(from_point)
            to_id = graph.findVertex(to_point)

            (tree,cost) = QgsGraphAnalyzer.dijkstra(graph,from_id,0)
            if tree[to_id] == -1:
                continue # ignore this point pair
            else:
                # collect all the vertices between the points
                route_points = []
                curPos = to_id 
                while (curPos != from_id):
                    route_points.append(graph.vertex(
graph.arc(tree[curPos]).inVertex()).point())
                    curPos = graph.arc(tree[curPos]).outVertex()

                route_points.append(from_point)

            # add a feature
            geom=QgsGeometry.fromPolyline(route_points)
            fet = QgsFeature()
            fet.setGeometry(QgsGeometry.fromPolyline(route_points))
            fet.setAttributes([id, geom.length(), inici, desti])
            vec.append(fet)
           
    if (len(vec) > 0):
        vec.sort(key=lambda vec: vec[1])
        for i in range (0,3):
            writer.addFeature(vec[i])
del writer
print("--- %s seconds ---" % (time.time() - start_time))

Finalment vam aconseguir un resultat que s’ajustava a les nostres necessitats, i així completar el procés de creació d’un mòdul amb el QGIS. Vam posar l’script en un mòdul per a python, vam posar-li totes les connexions necessàries.
python
I aquest en va ser el resultat final de tot el procés:
final

Procés d’utilització

Aquí es descriu el procés d’utilització del mòdul per trobar els 3 Camins més pròxims a una Escola Bressol i una d’infants. Aquest comença amb la preparació de les dades a la llegenda o panell de capes del QGIS. En el cas que ens ocupa necessitarem 4 capes SHAPE, 3 de punts i una de segments. Les 3 capes de punts són les Escoles Bressol, les Llars d’Infants  i els dintreilles, que són tots els portals de la ciutat.  I la capa de segments són el conjunts de carrers de la ciutat, és a dir, per on hem de trobar el camí.

Primer de tot, hem de tenir les capes en el tipus desitjat: SHAPE. En el cas que no estiguin ja en aquest format, cal transformar-les per tal de poder-hi treballar. Un cop les tinguem, les guardem per tal de poder-les agafar i emprar.

Tal com s’indica a la fotografia, s’afegeix cada capa via Capa -> Añadir capa -> Añadir capa vectorial:
afe3

afe

Seleccionem explorar i amb l’ajuda de la finestra, busquem els arxius SHAPE que volem posar.

afe2

Repetim l’acció 3 vegades més fins a aconseguir les 4 capes desitjades, tal i com es veu a la foto.

Un cop fet, anem al panell de la dreta de la pantalla on hi ha la “caja de herramientas de procesado” i busquem a l’apartat de Modelos -> CCU, un model anomenat “3EB més pròximes”.
afe4

Una vegada trobat, cal executar-lo. S’obrirà una pestanya amb el següent diàleg:

afe5

Posem a cada pestanya la capa que ens demani: a la primera hi posem la xarxa de carrers sobre la qual volem treballar, a la segona hi posem els Dintreilles o portals de la ciutat(assegurar-se de que sigui la versió “dintreilla_trajectes”) i finalment les escoles bressol o les llars d’infants. Haurem de repetir el procés per cada una de les capes: una per les EB i una altre per les LI.

Un cop tot estigui a punt, només cal executar el procés i esperar a obtenir el resultat. El temps d’espera pot variar segons l’ordinador on s’estigui executant aquest.

Quan finalitzi el procés cal guardar el resultat en un fitxer SHAPE, ja que està en un fitxer temporal i per tant, es perdria en el moment en què tanquem el programa.

Prova del mòdul

En aquest apartat es mostra un exemple de mostra del mòdul. No utilitzaré la capa del ‘dintreilla’ ja que es massa gran i per veure el funcionament, amb una simple capa en tenim prou.

En aquest cas utilitzaré una capa amb un punt (de color vermell) que serà el punt d’origen i una altre capa (de color verd) amb els possibles destins més propers. D’aquesta manera es pot veure ben clar el funcionament.
ex1

Posem en marxa el mòdul i el resultat que obtenim és el següent:

ex2

A la imatge es pot veure el graf de carrers de la ciutat de Mataró. S’hi pot veure 3 camins ressaltats de color verd clar. Tots tres tenen com a origen el punt vermell.

Generador de polígons de Voronoi (2/2)

En l’anterior entrada del bloc s’ha explicat l’aplicació “generador de polígons de Voronoi” des del punt de vista d’un programador, en aquest capítol s’explicarà com funciona des del punt de vista de l’usuari.

Es comentarà tot el procés que ha de fer l’usuari per poder utilitzar el mòdul de forma correcte i treure-l’hi el millor partit possible. Per això també es realitzaran una sèrie d’exemples per que l’usuari tingui la màxima facilitat a l’hora d’entendre el funcionament.

Carregar l’aplicació al Geomedia

Primerament explicaré com carregar el mòdul VB al Geomedia, de tal forma que pugui ser utilitzat per l’usuari.

  • Quan utilitzem el geomedia command wizard , plug-in que serveix per implementar el mòdul visual basic per que pugi ser utilitzar en l’entorn del geomedia profesional, se’ns creen dues carpetes.

Fig. 1. Contingut del nou projecte.

  • La carpeta “src” conté tots els arxius del projecte (mòduls, formularis etc..)

Fig. 2. Contingut carpeta "scr".

  • En la carpeta “bin” trobem l’arxiu .dll que es el que s’haurà d’instal·lar dintre del Geomedia.

Fig. 3. Contingut de la carpeta "bin".

  • Per instal·lar-ho utilitzem l’icona “install” d’intergraph, com podem veure a la següent imatge. Seleccionem la ruta de la carpeta “bin” del nostre projecte i pitgem “OK”.

Aquest procés tan sols s’haurà de fet un primer cop, ja que una vegada instal.lat el mòdul una vegada, per qualsevol canvi en el mòdul tan sols s’haurà de generar una nova dll, amb el procés explicat anteriorment al final del capítol anterior.

Fig. 4. Instal•lació nou mòdul creat.

  • Finalment, s’hi la instal·lació ha estat un èxit, ens hauria de sortir un missatge com el següent.

Fig. 5. Instal•lació satisfactòria del mòdul.

  • Una vegada estem dintre del interface del Geomedia Professional abans de poder provar el nostre mòdul, haurem de fer una mínim una connexió amb una base de dades que contingui classes d’entitat puntual de línia i d’àrea. ja que les tres son necessàries de cara al funcionament del aplicatiu. Per fer la connexió seguim el mateix procés explicat en el capítol 2, apartat Geomedia Professional.

Fig. 6. Addició de les connexions necessàries.

  • Una vegada fetes les connexions necessàries haurem de pitjar sobre un icona que ens apareixerà per defecte com el de la següent imatge. (Si volem tenir el mòdul a un dels menús, s’ha de seguir el procés explicat a L’annex 1).

Fig. 7. Icona per defecte del nostre mòdul.

  • Que ens portarà a la finestra del nostre mòdul, preparat per ser utilitzat.

Fig. 8. Finestra mòdul.

Exemples de la aplicació

En aquest capítol s’explicarà amb exemples el funcionament de la aplicació creada en l’entorn del Geomedia Profesional.

És realitzaran 4 exemples  amb centres proveïdors de serveis (escoles bressol, CAPS, centres de formació primària, Parades de bus) i un especial amb una consulta. Aquests exemples estaran documentats pas per pas i aportant diferents captures per mostrar els diferents punts de vista.

Escoles bressol

Per poder visualitzar el resultat dels polígons de Voronoi de la millor manera posible, haurem de tenir activades a la llegenda un mínim de dos classes d’entitat. Per una banda, l’area que limitarà el Voronoi, en aquest cas, el terme municipal de Mataró i per l’altra la classe d’entitat puntual sobre la que volem crear les nostres zones d’influència, en aquest exemple, seran les escoles bressol. Per això anem a Leyenda>Agregar entradas de leyenda i seleccionem aquestes en els desplegables de les connexions i pitgem el botó “aceptar”.

Fig. 9. Agregació de entrades de llegenda necessàries.

Com podem veure en les imatges, ens apareixeran les escoles bressol situades en el terme municipal.

Fig. 10. Escoles bressol i el terme municipal mostrats a la pantalla.

Si volem saber més detalls sobre les escoles, simplement pitgem a sobre d’una i ens apareixerà un quadre de diàleg com el següents on ens donarà propietats com el nom de l’escola o el numero de places entre d’altres.

Fig. 11. Propietats de les escoles bressol.

Una vegada tenim les classes d’entitat seleccionades a la llegenda, anem al mòdul  i seleccionem en els desplegables “EscolaBressol” com a entitat puntual, “Terme_municipal” com àrea delimitada i “Linies” com a sortida lineal per guardar el resultat del diagrama de Voronoi. Finalment pitgem el botó Calcular Voronoi.

Fig. 12. Omplir desplegables del mòdul per escoles bressol.

Com podem veure obtenim el diagrama Voronoi perfecte sobre les escoles bressol. El diagrama per aquest cas constarà de 17 línies guardades a la classe d’entitat “linies”.

Fig. 13. Polígons de Voronoi sobre les escoles bressol.

Com es pot comprovar, les línies no acaben en el límit del terme municipal, això es deu, ja que l’algoritme de Voronoi sempre es base en un quadrat o rectangle per arribar al punt final de les línies. Per tant en aquest cas calcula un quadrat imaginari amb els punts més alts de l’amplada i l’alçada. Per poder arreglar aquest problema, tenim dos formes de fer-ho des de el Geomedia:

  1. Fent una intersecció espacial:

Anem a Analisis> Intersección espacial .Una vegada dintre haurem de seleccionar  les classes d’entitat de línia i terme municipal i deixar per defecte la opció ” es toquen”. Escrivim el nom final de la consulta resultant i pitgem “aceptar”.

Fig. 14. Intersecció espacial entre línies i terme municipal.

Amb aquesta intersecció aconseguirem el resultat desitjat, com podem veure a la següent captura. El resultat de la consulta com podem veure a la llegenda es una barreja entre línies i àrees.

Fig. 15. Voronoi final sobre les escoles bressol mitjançant intersecció.

2.  Amb la opció dividir entidades.

Pitgem el boto “dividir entidades”.

Fig. 16. Procés dividir entitats (1/3).

Marquem el cursor i seleccionem el mapa amb les línies amb un quadrat.

Fig. 17. Procés dividir entitats (2/3).

Pitgem amb el botó dret a la pantalla i seleccionem la opció “realizar division”. Llavors, et va dividint el terme municipal en seccions de una en una.

Fig. 18. Procés dividir entitats (3/3).

Fins arribar al resultat final on tenim el Terme municipal dividit en regions de Voronoi.

Fig. 19. Voronoi resultant sobre escoles bressol mitjançant divisió d'entitats.

Llavors amb aquest mètode obtenim com a resultat final àrees. Seleccionant a la llegenda la classe d’entitat  “illes” podríem veure les regions d’una forma més visual.

Fig. 20. Voronoi resultant sobre escoles amb la capa d'illes.

Per últim activant la capa de la “ortofoto2013” a la llegenda podem visualitzar els polígons des de una vista Aérea similar a la de Google Maps.

Fig. 21. Voronoi resultant sobre escoles amb la capa "ortofoto".

CAPS

En aquest exemple crearem les regions de Voronoi al voltant dels CAPS de Mataró.

Primer de tot, com hem fet en l’exemple anterior agreguem a la llegenda la classe d’entitat puntual (CAPS)i  l’àrea  delimitant (terme_municipal). Com podem comprovar tenim 8 CAPS tal i com ens mostra la llegenda.

Fig. 22. Caps i terme municipal mostrats en pantalla.

Obrim el mòdul i  com hem fet en l’exemple anterior, seleccionem l’entitat puntual,(CAPS en aquest cas), el terme municipal com a area delimitada i per últim “linies” com a classe d’entitat de sortida per guardar el resultat. Pitgem Calcular Voronoi.

Fig. 23. Omplir desplegables del mòdul per escoles bressol.

Obtenim el  digrama de Voronoi resultant pels CAPS, que conté en aquest cas 14 línies.

Fig. 24. Diagrama de Voronoi sobre CAPS.

Llavors, utilitzant el segon sistema explicat anteriorment (Escoles bressol) per separar el Terme municipal en les regions de Voronoi obtindríem la següent imatge.

Fig. 25. Voronoi final sobre els CAPS mitjançant intersecció espacial .

Agregant la classe d’entitat illes a la llegenda tindríem la següent vista.

Fig. 26. Voronoi final sobre els CAPS amb la capa d'illes .

Finalment amb activant la Ortofoto com en l’exemple anterior, tindríem la vista des de dalt.

Fig. 27. Voronoi final amb la vista Aérea.

Parades de bus

Com als altres dos exemples, agreguem a la llegenda les parades de bus en aquest cas i el terme municipal. Com es pot comprovar a la següent imatge hi ha un total de 144 parades de bus a Mataró.

Fig. 28. Parades de bus i terme municipal mostrats en pantalla.

Seleccionem ParadesBus, Terme_municipal i Linies en els desplegables del nostre mòdul.

Fig. 29. Omplir desplegables del mòdul per Parades de bus.

Una vegada pitgem al botó Calcular Voronoi, obtindrem un resultat com el següent, abans però haurem d’esperar uns segons ja que al haver-hi 144 parades de bus, el programa necessita més temps per executar l’algoritme. Per tant no serà de forma immediata com en els altres dos exemples. Com podem veure  a la imatge s’han necessitat 408 línies per completar el diagrama de Voronoi.

Fig. 30. Diagrama de Voronoi per Parades de bus.

En aquest exemple utilitzem el primer mètode de intersecció espacial per arribar al resultat final desitjat. Anem a Analisis> Interseccion espacial i omplim els camps de la mateixa manera que en l’exemple de les escoles bressol.

Fig. 31. Intersecció espacial entre línies i terme municipal.

Al prémer el botó Acceptar obtindrem el Voronoi final de les parades de bus.

Fig. 32. Polígons Voronoi resultants sobre parades de bus mitjançant intersecció espacial.

Si afegim les illes a la llegenda, l’aspecte ens quedaria de la següent forma.

Fig. 33. Polígons Voronoi resultants amb la capa d'illes.

Apliquem la ortofoto per visualitzar el resultat de la millor forma possible.

Fig. 34. Polígons Voronoi resultants amb la vista Aérea.

Consultes

Aquest mòdul no només es pot utilitzar per classe d’entitats que estiguin a la base de dades connectada. Aquesta aplicació com la majoria de les creades en el CCU també pot utilitzar consultes que estiguin en memòria. La particularitat de la consulta es que pots seleccionar d’una mateixa classe d’entitat les entitats que tu vols, i després executar el mòdul sobre aquella selecció feta.

Si per exemple volem fer el Voronoi dels CEIPcon en el centre Urbà de Mataró com és mostra en la fotografia, hi ha un CEIPcon que quedaria fora d’aquest centre urbà. El problema vindria, ja que al executar el mòdul ho faria per totes les entitats, inclús la que queda fora del territori, per tant una consulta ens pot permetre eliminar aquesta entitat en memoria sense modificar la base de dades i poder realitzar el diagrama de Voronoi de forma satisfactòria.

Fig. 35. CEIPcon i centre urbà en pantalla.

Per crear la consulta desitjada, anem a Analisis>consulta espacial. Seleccionem CEIPcon en el desplegable seleccionar entidades en: . Després haurem de seleccionar la opció “estan contenides en” en el segon desplegable. I Per últim seleccionarem Centre Urba en el tercer desplegable. Finalment introdüirem un nom per la consulta de sortida i pitjarem “Aceptar”.

Fig. 36. Consulta espacial.

Per tant aquesta consulta el que ens farà serà seleccionar totes les entitats de CEIPcon que estiguin dintre del centre urbà.

Fig. 37. Nova consulta espacial representada a la llegenda.

Ara ja podrem utilitzar el mòdul per la consulta desitjada.  Simplement accedim al mòdul i en el desplegable de selecció d’entitat puntual, seleccionem la consulta creada en el sub-desplegable de consultes.

Fig. 38. selecció de la consulta creada al desplegable.

Com en exemples anteriors, seleccionem l’àrea delimitada en aquest cas seria el centre urbà i la classe d’entitat de tipus línia de sortida.

Fig. 39. Omplir desplegables del mòdul per escoles bressol.

Obtenim el Voronoi de forma perfecte sense tenir en compte la entitat exclosa.

Fig. 40. Polígons de Voronoi per la consulta creada.

Utilitzem la opció “dividir entidades” per obtenir el digrama final.

Fig. 41. Polígons de voronoi finals per la consulta creada mitjançant dividir entitats.

 

Mòdul generador de polígons de Voronoi (1/2)

En aquesta entrada es comentarà de forma extensa el nou mòdul del CCU “generador de polígons de Voronoi” des de el punt de vista del programador.

La funció d’aquesta nova aplicació serà la de poder generar zones d’influència per els diversos centres proveïdors de servei en Mataró, així com Escoles, CAPS, parades de bus etc. Aquest sistema s’implementarà amb un mètode geomètric anomenat Voronoi

Els diagrames de Voronoi són un dels mètodes d’interpolació més simples, basats en la distància euclidiana, sent especialment apropiada quan les dades són qualitatives. Es creen en unir els punts entre si, traçant les mediatrius dels segments d’unió. Les interseccions d’aquestes mediatrius determinen una sèrie de polígons en un espai bidimensional al voltant d’un conjunt de punts de control, de manera que dintre de cada polígon o regió la distància a un punt de control associat és sempre menor que a qualsevol altre punt de les altres regions.

Fig. 1. Exemple de diagrama de Voronoi

Algoritme utilitzat

Primer de tot és comentarà l’algoritme utilitzat per du a terme la nova aplicació, trobats a la pagina web de l’informàtic japonès Takashi Ohyam.

http://www.nirarebakun.com/voro/evoro.html

El programa final ha constat  d’una sèrie de mòduls i un formulari.

Fig. 2. Llistat de mòduls i formulari del projecte.

 

Formulari

Primer de tot s’ha creat el formulari, que serà la finestra que apareixerà una vegada pitgem per accedir al mòdul creat. El formulari el podem veure a continuació.

Fig. 3. Formulari de la aplicació creada.

Ara comentaré part per part els diferents desplegables i botons utilitzats en el formulari.

  • En el primer desplegable hem de seleccionar la classe d’entitat puntual sobre el qual volem crear els polígons de Voronoi.

Fig. 4. Desplegable per seleccionar l'entitat puntual.

Fig. 5. Codi relacionat amb el desplegable de selecció d'entitat puntual.

  • En el segon desplegable, haurem de seleccionar la classe d’entitat d’àrea que volem que limiti els polígons de Voronoi. En el nostre cas el terme municipal de Mataró.

Fig. 6. Desplegable per seleccionar l'àrea delimitant.

Fig. 7. Codi relacionat amb el desplegable de selecció d'àrea delimitant.

  • Per últim, seleccionarem la classe d’entitat de línia de sortida. És a dir, on volem que vagin a parar les línies o segments que formaran els polígons de Voronoi finals.

Fig. 8. Desplegable per seleccionar la sortida de les línies dels polígons.

Fig. 9. Codi relacionat amb el desplegable del desplegable de selecció de sortida.

  • Botó “calcular Voronoi”.

Aquest botó el que ens farà serà primerament carregar les dades seleccionades als                 quadres de diàleg del formulari, utilitzant la subrutina “Carregar_dades”.

Fig. 10. Botó calcular Voronoi.

Fig. 11. Codi que va darrere del botó "Calcular Voronoi".

I finalment executarà la subrutina Voronoi_mapa ( que conté l’algoritme ) i d’aquesta manera formarà els polígons desitjats. Aquesta subrutina serà comentada més endavant en l’explicació del mòdul voronoi_code.

  • Botó Sortir

El botó sortir, simplement seria per poder sortir de la aplicació en qualsevol moment.

Fig. 12. Botó sortir.

Fig. 13. Codi que va darrere del botó sortir.

Mòduls

Pel que fa als mòduls, comentaré els dos mòduls principals ( “Obtencio de coordenades”i “voronoi_code”) ja que la resta són creats de forma automàtica quan creem el Geomedia Comand Wizard, que seria el plug-in per tal de poder utilitzar l’aplicatiu VB en el geomedia (Explicat en l’annex II). Tot i que com es veurà més endavant també s’afegeixen algunes funcions necessàries en el mòdul “OperacionsGM”.

Mòdul Obtenció de coordenades

Aquest mòdul és essencial per poder passar al algoritme les coordenades de les diferents classes d’entitats puntuals o serveis sobre les quals haurà de crear les zones d’influència (polígons Voronoi).

El mòdul consta de la subrutina “proximitat”, que li entren els paràmetres rs, entitats.SelectedItem i entitats.ConnectionName procedents de la subrutina “carregar_dades” esmentada al formulari.

  • El primer pas per obtenir les coordenades és afegir a la taula de l’entitat puntual escollida per l’usuari les coordenades X Y d’aquesta. Això és codifica de la següent manera:

  • Generem un recordset afegint a la taula de l’entitat puntual escollida els atributs funcionals que s’han definit anteriorment (Xep, Yep). Un recordset és una estructura utilitzada en programació que permet emmagatzemar informació des d’una taula d’una base de dades.

 

  • Passem el resultat de la consulta (recordset) a una array per les X i per les Y.

  • Obtenim les coordenades en les variables X i Y, que seran utilitzades més endavant en el mòdul Voronoi_code, de cara al algoritme.

Modul Voronoi_code

Aquest mòdul consta bàsicament del algoritme i de subrutines i funcions d’ajuda per que es puguin crear els polígons de Voronoi sobre les coordenades de les classes d’entitats puntuals obtingudes gràcies al mòdul anterior.

La subrutina principal del mòdul és “voronoi_mapa”que podem veure comentada per part seguidament.

  • Primerament, definim les variables i recordsets necessaris per la utilització del programa.

  • Calculem els paràmetres ample i altura que seran utilitzats més endavant en l’algoritme.

  • Establim alguns recordsets necessaris i definim les noves variables utilitzades en l’algoritme. També cridem la funció “borrar_entitat”, que ens permetrà cada vegada que obrim el mòdul buidar la classe d’entitat de línia que he utilitzat per crear el Voronoi anterior.

  • Definim la variable NNN que determina el nombre d’entitats que te la classe d’entitat seleccionada. També  a última hora es van haver d’augmentar el número de posicions dels vectors utilitzats en l’algoritme, ja que en alguns casos on hi havien moltes entitats no acabava de completar l’algoritme per totes elles.

  • Comença l’algoritme amb el següent bucle, ens carrega en memòria totes les entitats en les coordenades corresponents, de cara a crear els polígons.

  • ad(i-1), rep el valor del mòdul de les coordenades X i Y de cada punt i l’utilitza alguns cops en l’algoritme


  • Cridem la subrutina “hSort” passant-li els paràmetres NN, ad, ax, ay calculats anteriorment.


  • Es va executant el gruix de l’algoritme (explicat en l’apartat algoritme i codi inicial) .

  • Finalment amb la funció  Inserta_linia es formen els segments dels polígons a partir d’un punt inicial i un punt final, on les coordenades dels punts serien respectivament x0= kx(k-1) y0= Ky(k-1) i les finals x=kx(k2-1) i y= Ky(k2-1).

Els segments resultants es guarden en un recorset anomenat “Recordset_linia”.

  • Per últim, haurem de mostrar el resultat aconseguit en el mapa i la llegenda

– Seleccionem l’estil de la línia i el nom que li volem posar al resultat.

– Introduïm la entrada de la llegenda en la primera posició

  • Per compilar l’arxiu el programa creat, haurem d’anar a Archivo> generar nomprojecte.dll com podem veure en la següent captura d’imatge. En cas, que no doni cap error de compilació se’ns haurà creat un arxiu ddl i estarà llest per carregar-ho al Geomedia.

Fig. 14. Generar.dll.

Cada vegada que s’hagin fet canvis en el programa, s’haurà de crear una nova dll, de cara a que els canvis sorgeixin efecte en el Geomedia. Com també haurà d’estar tancat el Geomedia Professional m’entres és realitza aquest procés, ja que en cas contrari donarà error.