Entrades classificades amb: Mataró

Preparació de l’entorn de treball per la creació d’un plugin per a QGIS

Introducció

En aquest post es podran llegir els passos que cal seguir per preparar un entorn de treball per a construir un plugin per a QGIS. Aquesta configuració no és la única proposta possible, sinó que és la que hem escollit nosaltres en particular.

El primer que cal fer és pensar una bona planificació del plugin: les funcionalitats que es volen incorporar, la tria i disposició dels elements que integraran la interfície, les fonts d’informació sobre les qual es volen realitzar els càlculs i quin tipus de sortides s’oferiran a l’usuari són alguns dels punts que cal tenir en compte a l’hora de la organització.

La interfície cal que sigui el més clara i intuïtiva possible per tal que amb unes simples instruccions l’usuari sigui capaç d’usar el plugin sense cap mena de problema. L’altre aspecte que cal tenir amb compte és el format de les fonts d’informació. Segons quines fonts no són ràpides a l’hora de ser tractades. Degut a aquest fet, recomanem treballar amb taules PostgreSQL ja que permet tractar un gran nombre de dades i fer funcions complexes en un període de temps molt reduït.

En el cas de les capes o taules de sortida, les sortides que no tinguin geometria és preferible guardar-les directament a la base de dades. Altrament, les sortides que si que tinguin geometria seria recomanable guardar el resultat de la consulta a la BDD i a partir d’allà generar un arxiu temporal .SHP per tal de que l’usuari pugui veure el resultat per pantalla en el projecte.

També cal instal·lar el programa ‘pgAdmin’ per tal de poder administrar les bases de dades des de les quals podrem extreure i afegir les dades que necessitem o obtinguem després dels nostres càlculs. Allà també podrem administrar els rols i permisos que volem donar en els usuaris.

Preparació i posta apunt

Entorn de programació

Per a poder crear un plugin de QGIS cal, com es obvi, el QGIS i un IDE. Un IDE és l’entorn de programació necessari per a poder programar el plugin internament. En el nostre cas, hem escollit l’IDE anomenat ‘Eclipse’ ja que és un entorn fàcil i intuïtiu, i té diverses funcionalitats d’entre les quals dues que són de gran utilitat: parlem d’un servidor per poder debugar mentre executem el plugin en el QGIS i un controlador de versions.

L’extensió per debugar remotament es connecta amb un altre plugin del QGIS(posteriorment serà explicat) i permet seguir l’execució del programa en temps real i tens la possibilitat de posar punts d’interrupció per tal de poder detectar possibles errors. A més a més, disposa d’una graella on s’hi pot veure el valor de les variables que són utilitzades en el codi en el moment en què parem l’execució.

La segona extensió recomanada és el controlador de versions, ja que està pensat per fer més fàcil i eficient la construcció manteniment d’aplicacions que tenen un gran nombre d’arxius amb codi font. Entre d’altres funcions permet fer un seguiment exhaustiu de les etapes que ha seguit el codi. Tens la possibilitat tornar a versions anterior en cas que hagis comès un error i seguir des de l’última versió correcta. També facilita el treball amb grup ja que permet ajuntar codi de dues o més persones fàcilment i d’aquesta manera es pot coordinar el treball que s’ha realitzat.

Els plugins de QGIS estan programats en Python, així doncs serà imprescindible instal·lar Python en el nostre equip en el cas que no ho estigui i també afegir l’extensió ‘PyDev’ a l’Eclipse.

Seguidament, explicarem pas a pas la instal·lació de tots el programes i extensions que s’han mencionat prèviament.

Comencem per la instal·lació del ‘Eclipse’. En el nostre cas ens hem descarregat la versió 4.5.2 de l’Eclipse Mars. En el cas de que l’equip no disposi de Java instal·lat, caldrà instal·lar-lo prèviament, ja que sinó l’Eclipse no funcionarà. Recomanem instal·lar la última versió.
Una vegada instal·lat, cal afegir les extensions necessàries. Comencem pel ‘PyDev’. Cal anar a Help a Install New Software (figura 1) i ens apareixerà una finestra com la de la figura 2.

1

Figura 1

2Figura 2

Pitgem el botó ‘Add’, que està ressaltat en la figura 2, i ens apareixerà un finestra com la de la figura 3.
3

Figura 3

Només cal omplir els dos camps buits: el primer amb el nom PyDev i el segon amb el link següent http://pydev.org/updates. Un cop fet, pitgem el botó OK per incorporar el repositori.

Després cal escollir PyDev en el desplegable de ‘Work with’ (figura 2 o 4)  i es carregaran les extensions que hi ha disponibles en el servidor. Un cop s’hagin carregat, escollim la opció del PyDev i pitgem el botó ‘Next’ per procedir a la instal·lació. Tot seguit haurem d’acceptar els termes de la llicencia i pitjar el botó ‘Finish’ per tal de finalitzar. Aquesta extensió porta incorporat la funció amb el servidor per debugar.

Per tal d’instal·lar la extensió de control de versions cal anar a la mateixa finestra que la figura 2 i a la pestanya desplegable cal escollir la opció <Mars – http://download.eclipse.org/releases/mars>  i en camp de filtre posar ‘Git’ tal i com es mostra en la figura 4.
4

Figura 4

Cal escollir les tres primeres opcions. La quarta és opcional: depèn de si interessa treballar amb GitHub. Un cop seleccionades les opcions, cal instal·lar-les com hem fet amb el PyDev.

Aquí acabaria la preparació de l’IDE.

QGIS

Aquests serien els requisits per poder treballar amb l’Eclipse. Seguidament explicaré les plugins que són necessaris per treballar amb el QGIS.

El primer pas per preparar l’entorn és la descarrega del QGIS des de la web del programa http://www.qgis.org/ca/site/forusers/download.html. La versió que nosaltres utilitzem és la 2.14, tot i això, qualsevol versió posterior hauria de funcionar sense cap mena de problema. Un cop descarregat, cal instal·lar-lo en el nostre equip.

Després de la instal·lació, és necessari obrir el programa QGIS i procedirem a instal·lar els plugins que comentarem seguidament.

Començaré per l’esmentat anteriorment, el plugin ‘Remote Debug’ que ens ajuda a connectar el QGIS amb el nostre IDE per tal de poder controlar l’execució i detectar possibles errors. Facilita molt la tasca de trobar errors i agilitza la codificació del plugin.

També hi ha el ‘Plugin Builder’. Aquest plugin crea una estructura bàsica o plantilla per a fer un plugin. Es parteix d’aquesta base i a partir d’allà es comença a programar el plugin amb el nostre IDE, que posteriorment l’importarem.

L’últim plugin a instal·lar és el ‘Plugin Reloader’. La seva funció és refrescar el connector mentre estem debugant errors i estem fent canvis en el codi. Si no ho féssim, els canvis en els codi no quedarien reflectits a l’execució.

Per poder instal·lar aquests cal seguir els passos següents: primer cal anar a Complementos à Administrar e instalar complementos com en la figura 5.
5

Figura 5

I seguidament ens apareixerà una finestra com la de la figura 6.
6

Figura 6

Abans de tot, cal anar a la pestanya de ‘Configuració’ i marcar la opció de mostrar els complements experimentals com en la figura 7.
7

Figura 7

Un cop marcada l’opció, tornem a la pestanya de ‘Todos’, com a la figura 6 i a la casella de buscar, busquem els plugins pel seu nom: Plugin Builder, Plugin Reloader i Remote Debug. Una vegada els hem trobat, pitgem el botó de instal·lar com el de la figura 8.
8

Figura 8

Ja instal·lats els plugins, apareixeran a la nostra barra d’eines del menú (figura 9).
9

Figura 9

L’últim detall que cal solucionar és indicar al Remote Debug el camí on hi ha el servidor per debugar del nostre IDE.

Per fer-ho cal pitjar la icona del plugin (és la que apareix a la dreta a la figura 9) i ens apareixerà una imatge com la de la figura 10.
10

Figura 10

En el camp pydevd path cap posar-hi el path següent: a la carpeta on hi ha guardat l’eclipse à Plugins à org.python.pydev_X.X.X.201608171824 à pysrc on X varia segons la versió que escollim.

pgAdmin

Per instal·lar el pgAdmin el primer que cal fer és descarregar-se l’aplicació des del lloc web que del programa https://www.pgadmin.org/download/. Allà només caldrà descarregar-se el que s’adequa a la nostra plataforma.

Un cop fet, només cal executar l’arxiu que ens hem descarregat i seguir els passos que indica.

Connexions a la base de dades

Per tal de poder configurar la connexió amb la base de dades cal seguir els següents passos:

Primer cal cercar a la barra d’eines en el lateral esquerra de la nostra pantalla una icona com aquesta 18
Un cop ho haguem fet, ens apareixerà una finestra com la de la figura 11. En allà cal premer el botó “Nueva”, tal i com està senyalitzat a la mateixa figura. Posteriorment ens ha d’apareixer una finestra com la de la figura 12. En allà cal introduir els camps necessaris per configurar la connexió: usuari, nom de la base de dades, servidor i contrasenya.
20

Figura 11

19

Figura 12

Funcionament

Creació del plugin

Comencem pel plugin Builder, ja que serà el primer que farem servir. Primer de tot, crearem un projecte i introduirem totes les dades que ens demana (figura 11).
11

Figura 11

Entre les dades que ens demana, li entrarem un camí on guardarà el plugin. És recomanable posar-lo al path següent: Disc Local (C:) à Usuaris à (Usuari on estigui el QGIS) à .qgis2 à python à plugins, ja que en aquella carpeta és on es guarden els plugins instal·lats.

Seguidament, copiem el camí i obrim l’eclipse. Anem a File à Import… i ens apareixerà una pestanya com la de la figura 14.
12

Figura 14

Pitjem l’opció de ‘Existing Projects into Workspace’ i ens mostrarà un pantalla com la de la figura 15.
13

Figura 15

Copiem el camí en el camp del directori arrel i pitjem el botó de ‘Browse..’. Un cop fet, es carregaran el projectes que hi hagi a la carpeta en requadre blanc. Llavors només caldrà seleccionar-lo i importar-lo mitjançant el botó Finish.

Finalment obrim el projecte i comencem a treballar a l’arxiu [nom del projecte].py que ja s’haurà creat prèviament.

Creació de la interfície

En el projecte que nosaltres hem creat, hi haurà un arxiu .ui que és la base de la nostre interfície. Aquest fitxer el podem editar amb el programa Qt Designer que s’instal·la automàticament quan instal·lem el QGIS en el nostre equip.

Per tant, per editar la nostra interfície obrim aquest programa i obrim el l’arxiu que tenim en nostre projecte.

El Qt Designer disposa de totes del eines que necessitem a la barra lateral esquerra i des d’allà incorporem els elements en el nostre disseny arrossegan-los fins on els vulguem posar.

Servidor per debugar

El que primer cal fer és obrir el ‘Eclipse’ i fer el seguent:

Anar a Window à Prespective à Open Prespective à Other com a la de la figura 16.
14

Figura 16

I seguidament se’ns obrirà una finestra com la de la figura 17.
15

Figura 17

Seleccionem Debug i seleccionem OK. A la barra d’eines superior ens mostrarà unes eines com les de la figura 18.
16

Figura 18

Cal pitjar el tercer botó 17 i haurem encès el servidor per debugar. Un cop fet, cal obrir el GIS i obrir el plugin del Remote Debug, que té una icona similar a la anterior. I ens apareixerà una finestra com la figura 10. Aleshores, només cal pitjar el botó de Connect i si hem configurat bé el complement, ens sortirà un missatge indicant que s’ha connectat amb el servidor.

Primers passos en el ‘rutatge’ al QGIS

En aquest post mostraré els passos que he hagut de seguir per tal de crear el primer dels mòduls que utilitza funcions de rutatge en el QGIS. En aquest cas, volem traslladar el mòdul que calcula els 3 camins a les escoles bressol i llars d’infants més pròximes a cada portal de la ciutat de Mataró. En primer lloc presento les capes amb les quals es treballa. Llavors segueixo amb la creació del mòdul i la seva utilització.

Capes de treball

Actualment amb el GeoMedia treballem amb bases de dades de Microsoft Access majoritàriament. Aquestes incorporen tot tipus de dades, ja sigui taules amb informació sobre el padró o el cadastre, que no estan georeferenciades, o capes de punts, línies o polígons com poden ser els mapes de carrers, illes, cruïlles i serveis públics de la ciutat. Les dades en aquest format ens permeten una gran versatilitat d’ús i facilitat tan en l’ús com en la creació, modificació i eliminació. També són fàcilment exportables a qualsevol altre tipus de format per seguir treballant. Ocasionalment també treballem amb arxius SHAPE.

El QGIS permet gestionar formats raster i vectorials a través de les biblioteques GDAL i OGR, així com altres bases de dades. Una biblioteca GDAL i OGR és un conjunt de programes que estan formats per comandes, cada un amb moltes possibilitats d’ús.

Les capes més comunes amb les quals hem treballat són el Vector Layer, on utilitzem arxius SHAPE (.shp), i Delimited Text Layer on utilitzem arxius CSV (.csv).

Ambdos tipus de dades poden ser modificats fàcilment: tan crear, inserir, modificar o eliminar objectes i/o camps, la qual cosa els fa idonis treballar amb aquests tipus d’arxius ja que si volem fer proves per poder desenvolupar les consultes o els mòduls, ens són de gran utilitat.

Procés de creació

Per crear la interfície gràfica s’utilitza un creador de models que porta incorporats una sèrie de funcionalitats. Haurem d’anar a la caixa d’eines de processat i allà “crear model nou”.
fuc
I seguidament se’ns obra la següent finestra:
nou
Les dues imatges següents corresponen a la columna de l’esquerra de l’anterior imatge hi tenim tots els tipus de paràmetres amb els quals podem treballar, i si canviem a la pestanya de algoritmes, trobem totes les funcions amb les quals podrem treballar sobre les dades. Cal veure el funcionament d’aquestes per tal de poder-les utilitzar correctament.

fuc

dades

 

 

 

 

 

Seguidament, vam afegir el tipus de dades i buscar les funcionalitats adequades per construir la interfície gràfica.

dades2
Una vegada introduïdes les capes, va ser necessari buscar una funcionalitat que convertís el tipus de geometria dels objectes de les capes de punts ja que van sorgir problemes per què obteníem una capa buida. En el nostre cas vam utilitzar el mòdul “Convert Geometry type”.
convert
Seguidament vam començar la recerca d’entre les funcionalitats alguna que calculi una ruta entre dos punts. No existeix una funcionalitat que faci tal funció, així que vam seguir la cerca. Vam seguir buscant entre els plugins que permet instal·lar el QGIS. Vam trobar-ne un que si que fa aquesta funció però no ens era d’utilitat ja que no hi ha cap manera d’automatitzar el procés de càlcul de les distàncies. Això doncs, vam recórrer a l’últim recurs: crear un script en Python que realitzi la funció.

Vam trobar un script que calculava la ruta entre dos punts sobre un graf de carrers. Aquest script utilitza una funció interna de la API de QGIS anomenada “dijkstra” que et retorna un camí. El següent script és el que vam trobar a Internet:

##ruta=name
##ruta=name
##points=vector
##network=vector
##output=output vector

#Algorithm body
#==================================
from PyQt4.QtCore import *
from PyQt4.QtGui import *

from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *
from processing.tools.vector import VectorWriter

point_layer = processing.getObject(points)
network_layer = processing.getObject(network)
writer = VectorWriter(output, None, [QgsField("order", QVariant.Int)],
network_layer.dataProvider().geometryType(), network_layer.crs())

# prepare graph
vl = network_layer
director = QgsLineVectorLayerDirector(vl,-1,'','','',3)
properter = QgsDistanceArcProperter()
director.addProperter( properter )
crs = vl.crs()
builder = QgsGraphBuilder( crs )

# prepare points
features = processing.features(point_layer)
point_count = point_layer.featureCount()
points = []
for f in features:
  points.append(f.geometry().asPoint())
tiedPoints = director.makeGraph( builder, points )
graph = builder.graph()
route_vertices = []

for i in range(0,point_count-1):
    progress.setPercentage(int(100 * i/ point_count))
    
    from_point = tiedPoints[i]
    to_point = tiedPoints[i+1]
    from_id = graph.findVertex(from_point)
    to_id = graph.findVertex(to_point)

    (tree,cost) = QgsGraphAnalyzer.dijkstra(graph,from_id,0)
    if tree[to_id] == -1:
        continue # ignore this point pair
    else:
        #collect all the vertices between the points
        route_points = []
        curPos = to_id 
        while (curPos != from_id):
            route_points.append(graph.vertex(
graph.arc(tree[curPos]).inVertex()).point())
           curPos = graph.arc( tree[ curPos ] ).outVertex()
        route_points.append(from_point)
    # add a feature
    fet = QgsFeature()
    fet.setGeometry(QgsGeometry.fromPolyline(route_points))
    fet.setAttributes([i])
    writer.addFeature(fet)
del writer

Un cop testejat i debuguejat, vam començar amb la modificació de l’script per tal d’obtenir el resultat desitjat. Aquest va ser un procés complex ja que s’havia de canviar el programa per dins. Després de forces entrebancs en el procés vam aconseguir un resultat força aproximat al que volíem. Van caldre forces hores per acabar de depurar el codi ja que teníem petits errors que costaven de detectar.

##dintreilla=vector
##EscolesBressol=vector
##network=vector
##output=output vector
#Algorithm body
#==================================
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import time
from qgis.core import *
from qgis.gui import *
from qgis.networkanalysis import *
from processing.tools.vector import VectorWriter

start_time = time.time()
network_layer = processing.getObject(network)

inputPoint = processing.getObject(dintreilla)
features = processing.features(inputPoint)

inputPoint2 = processing.getObject(EscolesBressol)
features2 = processing.features(inputPoint2)

di= 0
eb= 0
id = -1
fields = []
fields.append (QgsField("ID", QVariant.Int))
fields.append (QgsField("Length", QVariant.Int))
fields.append(QgsField("From_Node",QVariant.String))
fields.append(QgsField("To_Node",QVariant.String))

writer = VectorWriter(output, None, 
fields, network_layer.dataProvider().geometryType(), network_layer.crs())

#Per buscar els 3 millors de cada punt

for fea1 in features:
    di=di+1
    #xx = fea1.geometry().asPoint().x()
    #yy = fea1.geometry().asPoint().y()
    #pStart = QgsPoint(xx, yy)
    from_node = fea1.attributes()
    inici = from_node[0]
    print inici
    fea2=None
    features2 = processing.features(inputPoint2)
    eb = -1
    vec = []
    for fea2 in features2:
        eb=eb+1
        id  = id + 1
        nom = fea2.attributes()
        desti = nom[2]
       #---------------------------------------------------------------
        vl = network_layer
        director = QgsLineVectorLayerDirector(vl,-1,'Cost','Cost_inver','',3)
        properter = QgsDistanceArcProperter()
        director.addProperter(properter)
        crs = vl.crs()
        builder = QgsGraphBuilder(crs ,True,0.001)

        # prepare points
        points = []
        points.append(fea1.geometry().asPoint())
        points.append(fea2.geometry().asPoint())

        tiedPoints = director.makeGraph( builder, points )
        graph = builder.graph()

        route_vertices = []
        for i in range(0,2-1):
            from_point = tiedPoints[i]
            to_point = tiedPoints[i+1]

            from_id = graph.findVertex(from_point)
            to_id = graph.findVertex(to_point)

            (tree,cost) = QgsGraphAnalyzer.dijkstra(graph,from_id,0)
            if tree[to_id] == -1:
                continue # ignore this point pair
            else:
                # collect all the vertices between the points
                route_points = []
                curPos = to_id 
                while (curPos != from_id):
                    route_points.append(graph.vertex(
graph.arc(tree[curPos]).inVertex()).point())
                    curPos = graph.arc(tree[curPos]).outVertex()

                route_points.append(from_point)

            # add a feature
            geom=QgsGeometry.fromPolyline(route_points)
            fet = QgsFeature()
            fet.setGeometry(QgsGeometry.fromPolyline(route_points))
            fet.setAttributes([id, geom.length(), inici, desti])
            vec.append(fet)
           
    if (len(vec) > 0):
        vec.sort(key=lambda vec: vec[1])
        for i in range (0,3):
            writer.addFeature(vec[i])
del writer
print("--- %s seconds ---" % (time.time() - start_time))

Finalment vam aconseguir un resultat que s’ajustava a les nostres necessitats, i així completar el procés de creació d’un mòdul amb el QGIS. Vam posar l’script en un mòdul per a python, vam posar-li totes les connexions necessàries.
python
I aquest en va ser el resultat final de tot el procés:
final

Procés d’utilització

Aquí es descriu el procés d’utilització del mòdul per trobar els 3 Camins més pròxims a una Escola Bressol i una d’infants. Aquest comença amb la preparació de les dades a la llegenda o panell de capes del QGIS. En el cas que ens ocupa necessitarem 4 capes SHAPE, 3 de punts i una de segments. Les 3 capes de punts són les Escoles Bressol, les Llars d’Infants  i els dintreilles, que són tots els portals de la ciutat.  I la capa de segments són el conjunts de carrers de la ciutat, és a dir, per on hem de trobar el camí.

Primer de tot, hem de tenir les capes en el tipus desitjat: SHAPE. En el cas que no estiguin ja en aquest format, cal transformar-les per tal de poder-hi treballar. Un cop les tinguem, les guardem per tal de poder-les agafar i emprar.

Tal com s’indica a la fotografia, s’afegeix cada capa via Capa -> Añadir capa -> Añadir capa vectorial:
afe3

afe

Seleccionem explorar i amb l’ajuda de la finestra, busquem els arxius SHAPE que volem posar.

afe2

Repetim l’acció 3 vegades més fins a aconseguir les 4 capes desitjades, tal i com es veu a la foto.

Un cop fet, anem al panell de la dreta de la pantalla on hi ha la “caja de herramientas de procesado” i busquem a l’apartat de Modelos -> CCU, un model anomenat “3EB més pròximes”.
afe4

Una vegada trobat, cal executar-lo. S’obrirà una pestanya amb el següent diàleg:

afe5

Posem a cada pestanya la capa que ens demani: a la primera hi posem la xarxa de carrers sobre la qual volem treballar, a la segona hi posem els Dintreilles o portals de la ciutat(assegurar-se de que sigui la versió “dintreilla_trajectes”) i finalment les escoles bressol o les llars d’infants. Haurem de repetir el procés per cada una de les capes: una per les EB i una altre per les LI.

Un cop tot estigui a punt, només cal executar el procés i esperar a obtenir el resultat. El temps d’espera pot variar segons l’ordinador on s’estigui executant aquest.

Quan finalitzi el procés cal guardar el resultat en un fitxer SHAPE, ja que està en un fitxer temporal i per tant, es perdria en el moment en què tanquem el programa.

Prova del mòdul

En aquest apartat es mostra un exemple de mostra del mòdul. No utilitzaré la capa del ‘dintreilla’ ja que es massa gran i per veure el funcionament, amb una simple capa en tenim prou.

En aquest cas utilitzaré una capa amb un punt (de color vermell) que serà el punt d’origen i una altre capa (de color verd) amb els possibles destins més propers. D’aquesta manera es pot veure ben clar el funcionament.
ex1

Posem en marxa el mòdul i el resultat que obtenim és el següent:

ex2

A la imatge es pot veure el graf de carrers de la ciutat de Mataró. S’hi pot veure 3 camins ressaltats de color verd clar. Tots tres tenen com a origen el punt vermell.

Primeres consultes amb el QGIS

En aquest post, veurem com es fan consultes bàsiques com ara la població que viu a cada illa  o parcel·la de la ciutat de Mataró. El QGIS permet fer uns mapes temàtics molt clars. Per tal de realitzar aquesta consultes, hem de seguir els següents passos:

Primera consulta: habitants per illa

El primer pas és incloure en el nostre projecte la capa de illes i el padró de la ciutat. Un cop fet això, farem un join d’aquestes dues taules utilitzant el camp que tenen en comú: “D_S_I”. Fem la unió dins les propietats de la taula padró.

1. Afegim la connexió.

2. Escollim la taula ‘illes’ i el camp en comú.

Ja tenim la unió feta.

Un cop feta la unió, calculem el número d’habitants que té cada illa de la ciutat. Per tal de realitzar aquesta consulta hem d’utilitzar la funció “GroupStats”. En el cas que no la tingueu, heu d’instal·lar el plug-in.

Un cop aquí, hem d’arrossegar els paràmetres amb els quals volem treballar. En el nostre cas seran els següents: D_S_I i ID1, i també amb l’operador ‘count’, i els disposarem en les diferents files i columnes:

Un cop fet, executem la consulta i obtindrem la següent taula:

Seguidament, exportem la taula en un arxiu .csv i la incorporem en el projecte QGIS en el que estem treballant.

Seguim fent un join per tal de connectar les taules ‘Illes’ i ‘Count_Taules’ i així poder fer el mapa temàtic.

Posteriorment, canviem l’estil de les propietats de la capa “Illes” per tal que mostri les dades de població de cada illa de la ciutat.

Obrim la pestanya d’estils de la capa i el que hem de fer és canviar la pestanya superior de “Símbol únic” a “Graduat”, triar la columna amb les dades de població i clicar el botó de “classificar”. La funció d’aquest darrer botó és fer un classificació de les dades que es mostren i identifica cada interval amb un color diferent.

El QGIS ofereix grans possibilitats a l’hora de fer mapes temàtics com per exemple podem afegir o treure intervals i canviar el color identificatiu interval segons convingui.

Apliquem els canvis i ja tenim el mapa llest per ser consultat.

Segona cosulta: habitants per parcel·la

Per a realitzar aquesta consulta hem de seguir uns passos molt similars als que hem seguit abans. El primer pas és fer un join de les taules “Padro” i “parcel” que comparteixen l’atribut “REFCAD”. Realitzem aquesta acció des de les propietats de la taula Padro.

Afegim una nova conexió premen el botó “+” i seleccionem la capa de les parcel·les. Seguidament esollim els camps en comú i creem la unió.

Hem d’obtenir aquest resultat:

Un cop feta la unió, calculem el número d’habitants que té cada parcel·la de la ciutat. Per tal de realitzar aquesta consulta hem d’utilitzar la funció “GroupStats”. En el cas que no la tingueu, heu d’instal·lar el plug-in.

Li donen les instruccions necessaries per tal d’obtenir el resultat correcte:

I el resultat que obtindrem serà el següent:

Seguidament, exportem la taula en un arxiu .csv i la incorporem en el projecte QGIS en el que estem treballant.

Un cop fet això, només queda fer la unió d’aquesta taula amb la capa de les parcel·les i donar-li un estil graduat per tal d’obtenir el resultat desitjat en el mapa.

 

Aquí fem la unió de les taules.

Aquí canviem l’estil de les diferents categories que hi han i el resultat és el següent:

Mòdul generador de polígons de Voronoi (1/2)

En aquesta entrada es comentarà de forma extensa el nou mòdul del CCU “generador de polígons de Voronoi” des de el punt de vista del programador.

La funció d’aquesta nova aplicació serà la de poder generar zones d’influència per els diversos centres proveïdors de servei en Mataró, així com Escoles, CAPS, parades de bus etc. Aquest sistema s’implementarà amb un mètode geomètric anomenat Voronoi

Els diagrames de Voronoi són un dels mètodes d’interpolació més simples, basats en la distància euclidiana, sent especialment apropiada quan les dades són qualitatives. Es creen en unir els punts entre si, traçant les mediatrius dels segments d’unió. Les interseccions d’aquestes mediatrius determinen una sèrie de polígons en un espai bidimensional al voltant d’un conjunt de punts de control, de manera que dintre de cada polígon o regió la distància a un punt de control associat és sempre menor que a qualsevol altre punt de les altres regions.

Fig. 1. Exemple de diagrama de Voronoi

Algoritme utilitzat

Primer de tot és comentarà l’algoritme utilitzat per du a terme la nova aplicació, trobats a la pagina web de l’informàtic japonès Takashi Ohyam.

http://www.nirarebakun.com/voro/evoro.html

El programa final ha constat  d’una sèrie de mòduls i un formulari.

Fig. 2. Llistat de mòduls i formulari del projecte.

 

Formulari

Primer de tot s’ha creat el formulari, que serà la finestra que apareixerà una vegada pitgem per accedir al mòdul creat. El formulari el podem veure a continuació.

Fig. 3. Formulari de la aplicació creada.

Ara comentaré part per part els diferents desplegables i botons utilitzats en el formulari.

  • En el primer desplegable hem de seleccionar la classe d’entitat puntual sobre el qual volem crear els polígons de Voronoi.

Fig. 4. Desplegable per seleccionar l'entitat puntual.

Fig. 5. Codi relacionat amb el desplegable de selecció d'entitat puntual.

  • En el segon desplegable, haurem de seleccionar la classe d’entitat d’àrea que volem que limiti els polígons de Voronoi. En el nostre cas el terme municipal de Mataró.

Fig. 6. Desplegable per seleccionar l'àrea delimitant.

Fig. 7. Codi relacionat amb el desplegable de selecció d'àrea delimitant.

  • Per últim, seleccionarem la classe d’entitat de línia de sortida. És a dir, on volem que vagin a parar les línies o segments que formaran els polígons de Voronoi finals.

Fig. 8. Desplegable per seleccionar la sortida de les línies dels polígons.

Fig. 9. Codi relacionat amb el desplegable del desplegable de selecció de sortida.

  • Botó “calcular Voronoi”.

Aquest botó el que ens farà serà primerament carregar les dades seleccionades als                 quadres de diàleg del formulari, utilitzant la subrutina “Carregar_dades”.

Fig. 10. Botó calcular Voronoi.

Fig. 11. Codi que va darrere del botó "Calcular Voronoi".

I finalment executarà la subrutina Voronoi_mapa ( que conté l’algoritme ) i d’aquesta manera formarà els polígons desitjats. Aquesta subrutina serà comentada més endavant en l’explicació del mòdul voronoi_code.

  • Botó Sortir

El botó sortir, simplement seria per poder sortir de la aplicació en qualsevol moment.

Fig. 12. Botó sortir.

Fig. 13. Codi que va darrere del botó sortir.

Mòduls

Pel que fa als mòduls, comentaré els dos mòduls principals ( “Obtencio de coordenades”i “voronoi_code”) ja que la resta són creats de forma automàtica quan creem el Geomedia Comand Wizard, que seria el plug-in per tal de poder utilitzar l’aplicatiu VB en el geomedia (Explicat en l’annex II). Tot i que com es veurà més endavant també s’afegeixen algunes funcions necessàries en el mòdul “OperacionsGM”.

Mòdul Obtenció de coordenades

Aquest mòdul és essencial per poder passar al algoritme les coordenades de les diferents classes d’entitats puntuals o serveis sobre les quals haurà de crear les zones d’influència (polígons Voronoi).

El mòdul consta de la subrutina “proximitat”, que li entren els paràmetres rs, entitats.SelectedItem i entitats.ConnectionName procedents de la subrutina “carregar_dades” esmentada al formulari.

  • El primer pas per obtenir les coordenades és afegir a la taula de l’entitat puntual escollida per l’usuari les coordenades X Y d’aquesta. Això és codifica de la següent manera:

  • Generem un recordset afegint a la taula de l’entitat puntual escollida els atributs funcionals que s’han definit anteriorment (Xep, Yep). Un recordset és una estructura utilitzada en programació que permet emmagatzemar informació des d’una taula d’una base de dades.

 

  • Passem el resultat de la consulta (recordset) a una array per les X i per les Y.

  • Obtenim les coordenades en les variables X i Y, que seran utilitzades més endavant en el mòdul Voronoi_code, de cara al algoritme.

Modul Voronoi_code

Aquest mòdul consta bàsicament del algoritme i de subrutines i funcions d’ajuda per que es puguin crear els polígons de Voronoi sobre les coordenades de les classes d’entitats puntuals obtingudes gràcies al mòdul anterior.

La subrutina principal del mòdul és “voronoi_mapa”que podem veure comentada per part seguidament.

  • Primerament, definim les variables i recordsets necessaris per la utilització del programa.

  • Calculem els paràmetres ample i altura que seran utilitzats més endavant en l’algoritme.

  • Establim alguns recordsets necessaris i definim les noves variables utilitzades en l’algoritme. També cridem la funció “borrar_entitat”, que ens permetrà cada vegada que obrim el mòdul buidar la classe d’entitat de línia que he utilitzat per crear el Voronoi anterior.

  • Definim la variable NNN que determina el nombre d’entitats que te la classe d’entitat seleccionada. També  a última hora es van haver d’augmentar el número de posicions dels vectors utilitzats en l’algoritme, ja que en alguns casos on hi havien moltes entitats no acabava de completar l’algoritme per totes elles.

  • Comença l’algoritme amb el següent bucle, ens carrega en memòria totes les entitats en les coordenades corresponents, de cara a crear els polígons.

  • ad(i-1), rep el valor del mòdul de les coordenades X i Y de cada punt i l’utilitza alguns cops en l’algoritme


  • Cridem la subrutina “hSort” passant-li els paràmetres NN, ad, ax, ay calculats anteriorment.


  • Es va executant el gruix de l’algoritme (explicat en l’apartat algoritme i codi inicial) .

  • Finalment amb la funció  Inserta_linia es formen els segments dels polígons a partir d’un punt inicial i un punt final, on les coordenades dels punts serien respectivament x0= kx(k-1) y0= Ky(k-1) i les finals x=kx(k2-1) i y= Ky(k2-1).

Els segments resultants es guarden en un recorset anomenat “Recordset_linia”.

  • Per últim, haurem de mostrar el resultat aconseguit en el mapa i la llegenda

– Seleccionem l’estil de la línia i el nom que li volem posar al resultat.

– Introduïm la entrada de la llegenda en la primera posició

  • Per compilar l’arxiu el programa creat, haurem d’anar a Archivo> generar nomprojecte.dll com podem veure en la següent captura d’imatge. En cas, que no doni cap error de compilació se’ns haurà creat un arxiu ddl i estarà llest per carregar-ho al Geomedia.

Fig. 14. Generar.dll.

Cada vegada que s’hagin fet canvis en el programa, s’haurà de crear una nova dll, de cara a que els canvis sorgeixin efecte en el Geomedia. Com també haurà d’estar tancat el Geomedia Professional m’entres és realitza aquest procés, ja que en cas contrari donarà error.


 


 

 

 

 

 


 

 

Consultes predefinides sobre l’Activitat Econòmica via WMS

Els serveis de mapes en web (Web Map Service o segons les seves sigles WMS) responen a un sistema de consulta de capes d’informació de forma dinàmica des de la web. Aquests WMS permeten la visualització, combinar o bé consultar una sèrie de dades, de imatges generades a partir d’una o varies fonts (en el nostre cas a través del SIG-Geomedia).

Per poder realitzar la publicació es disposa d’un servidor extern amb el IIS i el GeoMediaWebMap com també es disposa d’una versió del Geomedia  que serà amb el qual es treballarà i el qual permetrà dur a terme les publicacions tant en els serveis WMS com WFS del servidor.

En aquest cas per poder definir les diverses activitats econòmiques que s’han volgut estudiar s’utilitzarà l’aplicatiu anomenat “Mostra les parcel·les que tenen activitat empresarial seleccionada”. Que ens permetrà situar sobre el mapa de Mataró quina és la ubicació de cadascuna de les activitats econòmiques (tal i com s’ha comentat en altres entrades al Bloc).

A la Figura 1 s’observa la llista de les diverses activitats que es poden seleccionar en l’aplicatiu. En aquest estudi s’han realitzat consultes per a: Farmàcies, Forns de pa, Carnisseries, Peixateries i Supermercats o autoserveis. Per tant s’haurà de decidir quin tipus d’activitats es poden incloure per cadascuna de les entitats.

Figura 1: Llista d’Activitats Econòmiques disponibles a l’aplicatiu

En aquest mòdul per realitzar les diverses consultes es treballarà amb els números de policia. I es duran a terme diverses modificacions a les opcions que permetran una visualització al mapa més clara.

Tal i com s’observa la Figura 2 es troben les diverses modificacions realitzades per tal de dur a terme la consulta pel cas de les Farmàcies a 5 minuts. A l’hora de calcular en temps (zona d’influència), a diferència del càlcul de distància, és necessari activar les opcions cost de nusos i cost invers.

Figura 2: Modificacions a les opcions presents a l’aplicatiu

S’obtindran tres resultats per cadascuna de les consultes que es realitzin. Per un costat quedarà definida el nombre d’entitats i la seva ubicació al mapa, també apareixerà la zona d’influència de cadascuna de les entitats (Figura 3). I per últim la població exclosa en cada cas.

Figura 3: Representació zona d’influència (ZI) sobre mapa Mataró

Per cadascuna de les 5 activitats econòmiques s’ha dut a terme una consulta amb una zona d’influència diferent: 150 metres, 300 metres, 2 minuts, 3 minuts i 5 minuts.

Serà necessari exportar aquests resultats a una nova BBDD creada. D’aquesta forma es tindran totes les taules creades per cadascuna de les consultes juntes. Aquesta BBDD un cop creada s’haurà de copiar dins el servidor en el qual es treballa i que permetrà fer la publicació.

Un cop dins el servidor (incorporat la nova BBDD) s’obre el Geomedia i es carreguen els diversos resultats obtinguts amb les consultes. Per fer-ho s’afegeix una nova llegenda i es carrega l’opció que es desitgi (tant pel nombre d’entitats, per la Zona d’Influència i de la Població Exclosa).

Figura 4: Llegenda carregada exemple Supers (Entitat-Zona influència-Població Exclosa).

Per poder realitzar correctament la publicació hauran d’estar totes les consultes carregades i visibles al mapa, ja que el que apareix/es mostra en pantalla és el que s’arribarà a publicar posteriorment. Per tant, ha d’estar visible totalment tal i com s’observa a la Figura 5.

Figura 5: Càrrega de la llegenda i visualització total de les diverses consultes al mapa

A continuació s’inicia el procés de publicació.
En primer lloc s’obre el “Server ConfigurationUtility” del GeoMediaWebMap Professional. I es crea un nou servei seleccionant l’opció “Generate Map Web Service” per crear un servei WMS. Al qual, posteriorment, s’haura d’aplicar el nom que un desitgi.

Figura 6: Generació del Servei WMS dins el Server Configuration Utility

S’ha de tenir present que les metadades que es crearan es guardaran en una base de dades, s’escull Access i s’introdueix quina és la connexió (a on guardar aquesta base de dades creada).

Figura 7: Tria del tipus de base da dades que es desitja

Finalment, i si el procediment s’ha desenvolupat correctament, si es torna a entrar al “Server configuration Utility” es veu com s’ha creat el nostre nou servei dins el Web Service.

A continuació es torna al Geomedia i s’obre el “GeomediaWebMap Publisher Administrator” que es pot trobar a la barra d’eines.

Figura 8: Opció del GeomediaWebMap Publisher Administrator

Es selecciona el Servei WMS que s’ha creat.

Figura 9: Selecció del Servei WMS creat

I apareixerà una barra lateral amb diversos botons.

Figura 10: Les diverses opcions a triar dins el GeomediaWebMap

En primer lloc polsar sobre el 5é botó “PublishandPopulatetheGeoWorkspace”, i seleccionar la primera opció “PublishtheGeoWorkspace contents to theMetaData”. Que ens servirà per tal d’actualitzar les metadades.

Tot seguit s’inicia un procés que dura uns segons apareixent una advertència. Es selecciona “Si” per passar la informació del GeoWorkspace a la base de dades de les Metadades.

A continuació es selecciona el primer botó “Map Content”. On s’observa tot el que es publicarà al servei WMS.

Figura 11: Selecció del botó Map Content

Observar amb precisió que la informació que apareixerà a la Llegenda es correspon amb el que realment es vol i que per tant aquesta informació és visible (prestant atenció als temàtics- Població Exclosa).

En aquest cas, els temàtics tal i com s’observa apareixen correctament (forns de pa amb cadascuna de les divisions segons la població exclosa).

Figura 12: Verificació de la correcte creació dels temàtics

A continuació es selecciona el 2on botó “Settings”. Aquí es realitzarà la comprovació que realment hi ha un sistema de coordenades assignat.

Figura 13: Tria de l’opció Settings dins el GeomediaWebMap

En el cas que no hi sigui serà necessari escollir un sistema de coordenades per a publicar les dades. Es selecciona un arxiu de sistema de coordenades que sigui el mateix que el del GeoWorkspace. Finalment, i un cop triat, apareixerà el sistema de coordenades que s’ha triat a l’apartat SRS.

Figura 14: tria del sistema de coordenades

Per últim, polsar l’últim botó per tancar el “GeomediaWebMap Publisher Administrator”.

Finalment, es torna a obrir el “Server ConfigurationUtility” del GeoMediaWebMap Professional, es selecciona el servei creat i es polsa sobre el botó “Initialize”. Així s’inicialitzarà el servei.

Figura 15: Publisher Server Configuration Utility

Si el procediment s’ha realitzar correctament apareixerà un missatge de “Servei inicialitzat amb èxit”. I per tant s’haurà dut a terme correctament el procediment de publicació.

Figura 16: Procediment final de publicació

A continuació es prova el servei des del navegador introduint la següent línia de comanda:

http://geoportalccu.tecnocampus.cat/wmsAE3/request.aspxservice=wms&request=
getcapabilities

On es comprova el correcte funcionament en el cas de WMS, i on es veu en el codi cadascuna de les consultes realitzades com també les diverses dades publicades (aquesta línia de comanda és diferent pel tipus de publicació que es vulgui realitzar, si és WFS o WMS)

Finalment, per acabar el procés de publicació s’accedeix al Global Mapper i es van introduint cadascuna de les consultes creades per observar com totes les entitats es poden visualitzar correctament al mapa.

Un cop iniciat el Global Mapper seleccionem l’opció “Download Online Data”.

Figura 17: Download Online Data del Global Mapper v14

Tot seguit seleccionem “Add New Source”. Per tal d’introduir el nou servei que s’ha creat anteriorment. I es tria l’opció de dades que en aquest cas és WMS (Web Map Service).

Figura 18: Tria del servei creat al Global Mapper

Es selecciona el següent URL, extret de la verificació de la comanda anterior per internet. I s’acciona el botó “Get List of Available Data Layers”, on apareixeran les diverses entitats.

http://geoportalccu.tecnocampus.cat/wmsAE2/request.aspx

Figura 19: Tria i càrrega de les entitats a visualitzar al mapa

Es tria una d’elles per tal d’observar-la al mapa i s’acciona “connect” per realitzar la visualització.

Finalment i després d’anar realitzant totes les connexions amb les diverses entitats, aquestes haurien de ser visibles alhora al mapa. A continuació-Figura 20 es mostren diverses d’aquestes consultes visualitzades conjuntament (tant el nombre d’entitats, la zona d’influència  i la població exclosa per cadascuna de les consultes) observant d’aquesta forma com la publicació de tots casos ha estat un èxit i ha finalitzat satisfactòriament.

Figura 20: Visualització completa de les entitats al Global Mapper v14

En resum, aquest és el procediment que s’ha dut a terme per tal de realitzar la publicació via WMS  mostrant les eines utilitzades en cada etapa.  Es comença per la creació de les consultes sobre les Activitats Econòmiques seguint l’aplicatiu amb diverses zones d’influència tant per distància com per temps. Es segueix amb el procés de creació del servei i publicació en si mitjançant el GeomediaWebMap Professional. I per últim, la validació de les diverses entitats publicades mitjançant el GlobalMapper.

 

 

 

 

 

 

 

 

 

 

 

Estudi de l’Activitat Econòmica

 

Unes de les aplicacions més sol·licitades dels Sistemes d’Informació Geogràfica (SIG) són les que tenen a veure amb l’anàlisi de l’activitat econòmica (AE), sigui aquesta la corresponent d’una ciutat, d’un territori o d’un país.

De fet la col·locació sobre el terreny de les diferents activitats econòmiques és una informació estratègica de primer ordre, ja que d’una mirada es pot intuir  si d’una determinada activitat, diguem-ne per exemple: restaurants, farmàcies o perruqueries, n’hi ha una concentració exagerada, equilibrada o deficient. Una anàlisi més rigorosa ens permetria saber si d’acord amb la població ‘target’ que hi ha en la seva proximitat i amb els hàbits de mobilitat de la població està justificada o no una determinada oferta en un lloc concret en relació amb la demanda possible. En aquest sentit s’hauria d’anar a esbrinar motivacions sociològiques, moltes vegades difícilment  racionalitzables, per explicar el per què de la presència o no  d’una activitat en una àrea determinada.

De tota manera, una de les motivacions més senzilles de la geolocalització d’activitats econòmiques en un territori, serien les aplicacions anomenades de ‘geo-marketing’, consistents en veure on hi ha ‘buits’ o mancances d’una determinada activitat per impulsar la creació de negocis precisament en aquells indrets.

Un primer punt d’un aplicatiu que respongués a tals característiques seria la ubicació de les activitats econòmiques sobre el mapa de la ciutat, en aquest cas, de la ciutat de Mataró. Aquesta eina per ser útil caldria que oferís la possibilitat de diferents mètodes de cerca de les activitats, sigui pel nom o descripció, sigui pel codi corresponent segons una determinada classificació. També caldria tenir una font de les activitats i un manteniment que permetés afegir amb agilitat les altes i les baixes que es van produint.

Arribats a aquest punt cal dir que el CCU ha treballat i està treballant en la generació d’eines que permetin ubicar les AE sobre el mapa de la ciutat de Mataró, tant pel que fa a parcel·la com a portal.

La font  de la informació de l’AE de Mataró que ha escollit el CCU és la Brossa Comercial (BC). Cada activitat genera un tipus de deixalles específic i això influeix en la tarifa que ha de pagar, i quan es deixi de fer l’activitat el seu titular serà el primer interessat en notificar-ho als responsables de recaptació per deixar de pagar per aquell concepte, per tant la Base de Dades de la Brossa Comercial és una font actualitzada de l’AE a la ciutat. Com a part negativa d’escollir aquesta font hi ha el fet  que l’activitat real que es faci no s’ajusti exactament a la declarada en concepte de deixalles generades.

Respecte al tema de la classificació, en aquest moment s’ha escollit la forma de classificació que la BC utilitza, que és la dels epígrafs de l’antic IAE (Impost sobre l’Activitat Econòmica), amb tendència a anar-ho canviant progressivament cap a la classificació CCAE (Classificació Catalana d’Activitats Econòmiques).

A l’aplicatiu del CCU també es poden visualitzar algunes característiques concretes com ara la superfície de l’activitat i consultar igualment algunes informacions proveïdes per la Base de Dades de la BC. A més a més també es poden consultar d’altres informacions relacionades amb la població que s’aniran explicant tot seguit i que el refermen com a eina analítica a més a més d’informativa.

Anem a concretar una mica tot això. A la figura 1 es pot veure la interfície on hi el cercador on a partir d’un paraula o conjunt de paraules o d’un codi podem anar seleccionant les activitats que es volen mostrar.

Fig 1. Llista d’activitats que podem cercar i seleccionar

Un cop escollida l’activitat, si es tracta de situar els portals on es desenvolupa l’activitat, es pot anar a una altra pestanya per incidir en el tamany del ‘topo’ on es mostra (proporcional a la superfície del local), i fer d’altres mesures relacionades amb la població, com ara definir una zona d’influència(ZI) a l’entorn de la ubicació de cada activitat i mostrar un mapa temàtic de la població que queda fora de aquestes zones d’influència.

Si mirem per exemple les ferreteries, la segona pestanya seria la que mostra la figura 2

Fig 2. Pestanya pes escollir tamany dels ‘topos’ i de la Zona d’Influència i tipus de Z.I

En aquest cas s’ha escollit un factor de forma dels ‘topos’ de 2, àrees d’influència circulars de 150 m de radi i veure el mapa temàtic de la població exclosa. La sortida es mostra a la figura 3 on s’ha fet un zoom sobre el centre urbà de la ciutat i es poden apreciar els indrets de l’activitat, les  ZI circulars i el mapa temàtic de les illes externes a les ZI.

Fig 3. Ferreteries amb ZI de 150 m i temàtic de població exterior

La llegenda corresponent a aquest mapa es mostra a la figura 4:

Fig 4. Llegenda del mapa de ferreteries

En el mapa temàtic de la població, les Illes més fosques corresponen a les de més població i per tant allà on ‘faria més falta’ la instal·lació de noves activitats.

Les ZI es poden escollir també sobre el Graf de Trams de Carrer (GTC), anem a  veure un altre exemple, les farmàcies.

En aquest cas hi ha la possibilitat d’escollir el treballar amb distància o recorregut seguint el GTC o bé amb temps de trajecte, i s’ha triat una zona d’influència de 3 minuts a l’entorn de cada centre d’activitat. La segona pantalla es mostra a la figura 5 i la sortida a la figura 6

Fig 5. Segona pantalla per a les Farmàcies amb ZI-GTC

Fig 6. Sortida de la consulta de Farmàcies amb ZI graf a 3 minuts

En resum la interacció entre la situació de les diferents activitats econòmiques amb la població, segmentada per Illes, permet veure la sobre-presència d’activitats en uns punts de la ciutat així com la no presència en d’altres on hi pot haver potencials usuaris o compradors. També la utilització del graf de trams de carrer graduat per distància o per temps ens dóna una idea molt fidel del concepte de proximitat i ens permet fer un anàlisi més acurat de les necessitats o tendències properes en la instal·lació de noves activitats.

 

 

 

 

 

 

 

Sobre el Graf de Trams de Carrer (GTC)

 

Tal com ja s’ha comentat en aquest bloc quan hem parlat del ‘Nou concepte de Zones d’Influència’, un element bàsic de la modelització dels desplaçaments a la ciutat de Mataró és el Graf de Trams de Carrer (GTC). Aquest graf està format per segments i nodes, cada segment és un tram de carrer (part del carrer entre cruïlles) i els nodes són precisament les cruïlles.

El GTC es pot obtenir de moltes maneres, però en resum hi ha dos orígens bàsics, ad­quirint-lo a una empresa especialitzada (com per exemple Navteq o  TomTom) , on s’inclouran informacions sobre els sentits de circulació en cada via i els girs prohibits i autoritzats en cada nus i moltes altres coses, o bé generant-lo nosaltres mateixos, aquí s’ha optat pel segon cas, més que res per que es vol estudiar més el desplaçament de vianants  que no pas el de vehicles i d’aquesta manera podem afegir i incloure en el GTC trams que no siguin vials de carrer, com ara camins de vianants dins de parcs o zones verdes i recorreguts específics de la gent que va a peu.

Des del punt de vista d’un SIG el GTC està format per un conjunt d’entitats, o classe d’entitat, segons la terminologia del GeoMedia, de tipus lineal, els segments del graf, i un conjunt d’entitats de tipus punt, els nodes. Aquestes entitats lineals han de ser total­ment connexes si es vol navegar al seu través, o sigui, no hi pot haver cap punt de des­connexió o discontinuïtat. També a part de les característiques geomètriques de cada classe d’entitat, línies i punts, cal que hi hagin uns atributs associats a cada element si­gui aquest segment o node.

Quins són aquests atributs?

En primer lloc hi ha d’haver un codi per a cada segment i un codi per a cada node aquests dos codis han d’estar relacionats, és a dir,  dins de cada segment hi ha d’haver informació d’entre quins dos nodes està definit aquell segment en concret, i això per a tots els segments, d’aquesta manera amb aquestes dues llistes la de segments amb els codis dels nodes dels extrems de cada segment i la dels nodes s’estableix la morfologia del graf i es podria calcular una ruta encara que no tinguéssim la imatge geomètrica precisa.

Un altre atribut que podem tenir dins de la taula de segments és sobre l’ orientació o sentit del tram, aquesta orientació és arbitrària i s’agafa en el moment de definir el graf, per tant ens cal saber quin és el node d’origen del tram i quin el node de final del tram, per tant aquests nodes extrems del tram no són qualssevol , un d’ells és des de on parteix el tram i l’altre és a on arriba.

Per la construcció del GTC utilitzem una eina del GeoMedia Transportation Manager que parteix d’una classe d’entitat lineal i ella mateixa et va guiant per acabar obtenint les dues classes d’entitat del graf, els segments i els nodes, automàticament és generen els camps: NodeId en la taula de nodes amb un codi per cada node, i els camps: EdgeId, FromNodeId, ToNodeId en la taula de segments, que ens indiquen el codi de segment, i des de quin node a quin altre node està definit el segment, respectivament. Aquests són els camps principals per la construcció del graf, després n’hi ha uns altres que anirem comentant a continuació. Vegeu a la figura 1 una part dels segments i els nodes del GTC amb els identificadors respectius.

Fig1. Segments i Nodes del GTC amb els codis de EdgeId (vermell) i NodeId (negre)

Si cliquem sobre del tram 1017 obtenim les informacions que es mostren a la figura 2, on es poden comprovar els valors dels atributs EdgeId, FromNodeId i ToNodeId i es pot veure que el tram 1017 efectivament va del node 836 fins al node 837 tal com es veu a la figura 1.

Fig2. Dades del Segment 1017

De la mateixa manera es pot comprovar que hi ha molts altres camps dins dels atributs del tram, fixem-nos de moment en els camps LENGTH i Cost i Cost_invers.

Per què volem el GTC?

Per a dues coses, en primer lloc per a navegar des d’un punt de la ciutat fins a un altre, aquesta navegació ens ha de portar al conjunt de segments concatenats que uneixin el punt inicial amb el punt final segons un determinat criteri d’optimització que podria ser minimitzant la distància o minimitzant alguna altra variable (a la figura 3 es mostren els trajectes a les 3 Escoles Bressol més properes des d’una adreça concreta de la ciutat)  i en segon lloc per desplegar a partir d’un punt el conjunt, ramificat en arbre, de trajectes fins a assolir una determinada distància màxima o un valor màxim d’un altre indicador (vegeu la figura 4)

Fig 3. Trajectes a les 3 Escoles Bressol més properes des d’un punt de la ciutat seguint el GTC. La variable a optimitzar és la distància.

A la figura 4 es pot veure aquesta construcció en arbre, seguin el GTC, a partir de l’entitat: Escola Bressol ‘Les Figueretes’ fins a una distància màxima de 250 m. Com es veu a la figura la progressió fins a assolir els 250 metres pot acabar en un punt entremig del tram.

Fig 4. Arbre corresponent a l’Escola Bressol ‘Les Figueretes’ sobre el GTC (segments i nodes) fins a una distància de 250 m.

Tant en el cas 1, camí o trajecte entre dos punts de la ciutat, com en el cas 2, arbre des­plegat sobre el GTC a partir d’un punt, s’ha utilitzat la distància, el camp LENGTH, de cada segment com a base dels càlculs, això vol dir el camí òptim de distància mínima entre dos punts o el desplegament per la xarxa de trams de carrer fins arribar a fer la distància fixada de 250 m.

Una altra possibilitat seria fer servir una altra variable a minimitzar quan volem definir un camí o a utilitzar quan volem definir un desplegament en arbre, aquesta variable se­ria la que tenim quantificada en els camps Cost i Cost_invers de cada tram. Així com la longitud del tram no depèn de si es recorre en un sentit  o en un altre, en canvi si es tre­balla amb una altra variable, com ara el temps de recorregut del tram, sí que depèn de les característiques específiques de cada tram, com ara el pendent, els obstacles i la ti­pologia (plataforma única, escales, etc.) i en aquest cas té sentit de tenir dos paràmetres per tram, per si es circula en el sentit definit del tram Cost o si es va en sentit contrari Cost_invers. Això pot donar lloc a diferències importants de recorregut o de conjunt de carrers a l’abast si es va de casa a l’Ambulatori o es torna de l’ambulatori, sobretot quan el terreny és accidentat, amb moltes pujades i baixades.

En resum, quan més acurada sigui la informació del GTC, i en concret de cada tram, més es podrà afinar en la cerca de recorreguts òptims i en la definició de les Zones d’Influència a través del graf. De la mateixa manera, la utilització de la variable temps com a funció de cost, ens dona una mesura molt més real de la proximitat o llunyania dels centres proveïdors de serveis al ciutadà però requereix de tenir un bon model de la velocitat en els desplaçaments.

Relació entre la capacitat d’un centre proveïdor de serveis i la seva àrea d’influència

 

Ja s’ha vist, en aquest mateix Bloc, com associar la població amb el territori, sabem que pot quedar associada a les Illes, parcel·les i els portals de la ciutat, i també s’ha vist com segmentar aquesta mateixa població segons determinats criteris, franja d’edat, estudis, procedència geogràfica, nacionalitat etc.

Ara anem a explicar com donat un determinat centre proveïdor d’un servei, per exemple un centre educatiu,  podem delimitar una zona del territori immediatament proper, de manera que ‘casin’ la capacitat del centre per una part i la població ‘target’ d’aquest zona propera per altra.

No cal dir que la vista del territori estudiat, en aquest cas la ciutat de Mataró, amb els centres proveïdors  del servei i les respectives àrees properes d’influència, pot donar una imatge, al menys teòrica, de la cobertura o no cobertura de les necessitats del global de la població en el servei objecte d’estudi.

Des d’un punt de vista tecnològic, és a dir, de les eines que ens poden permetre obtenir aquesta representació gràfica, un SIG (Sistema d’Informació Geogràfica) per sí mateix no ens permet obtenir-ho d’una forma fàcil i immediata. Per tant hem hagut d’anar a les funcionalitats base del nostre SIG, en aquest cas el GeoMedia, per generar un procés iteratiu i convergent de modificació de la zona d’influència fins que el nombre d’habitants continguts a la zona, coincideixi amb la capacitat de servei del centre estudiat.

Anem a veure-ho per un cas concret que coneixem. Suposem que volem estudiar la implantació de les Escoles Bressol Municipal a la ciutat de Mataró, recordem la situació dels centres en la figura 1.

Fig 1. Situació de les Escoles Bressol Municipals a la ciutat de Mataró.

Ja que els usuaris de les Escoles Bressol són nens entre 0 i 2 anys, el que s’ha de fer és preparar una segmentació de la població total que només tingui en compte aquesta franja d’edat, i també s’ha d’escollir si ho agreguem per Illes, parcel·les o portals. Utilitzarem el recurs basat en Visual Basic que ja vam explicar, la interfície seria la de la figura 2.

Fig 2. Escollim els habitants entre 0 i 2 anys agrupats per Illes.

Això vol dir exactament que tenim associat a cada illa de cases el nombre de nens entre 0 i 2 anys que hi ha empadronats en algun habitatge de l’illa. Ens cal també tenir associat a cada entitat Escola Bressol el nombre màxim de nens que pot acollir. A partir d’aquestes dues dades podem iniciar el procés de càlcul pròpiament dit. Cal tenir en compte que l’àrea d’influència resultant serà, probablement, diferent per a cada entitat ja que dependrà tant de la capacitat del centre com de la densitat que hi hagi a les illes del voltant de cada centre de nens entre 0 i 2 anys.

Fixem-nos en la interfície de càlcul de les Àrees d’Influència de la figura 3, aquí podem veure el formulari que s’ha d’omplir per iniciar el càlcul.

Fig 3. Interfície per generar les Àrees d’Influència

Els camps més importants són:

Tipus d’agregació: ILLES [podrien ser també Parcel·les o Portals]
Entitat Base: Escoles Bressol [a partir de les quals generem les Àrees d’Influència]
Paràmetre del Radi Incial: 400 [valor associal al radi de les Zones d’Influència incials]
Cobertura: 100% [si volem que Tota la població del rang tingui Escola Bressol, o només una part, en aquest cas aquest valor seria de menys del 100%]
Possibilitat de comptar els habitants que no estàn a cap zona: Sí
Possibilitat de fer un mapa temàtic de la població no inclosa: No
Treballar per Trams: No [Possibilitat d’agafar Zones d’Influència Circulars o a partir del Graf de Trams de Carrer]

Si premem el botó de ‘Calcular l’Àrea d’Influència’ obtenim el que surt a la figura 4.

Fig4. Àrees d’Influència de les EB Municipals

A l’anterior figura es pot veure l’Àrea d’Influència de cada Escola Bressol Muncipal on s’ha aproximat la població entre 0 i 2 anys de cada zona i la disponibilitat de places de cada centre. Encara que no es vegi a la figura 4, s’ha calculat igualment el  nombre de nens d’aquestes edats que queda fora del conjunt d’àrees, que és per a tota la ciutat de 1972. Cal pensar també que segons la mena d’agregació que es faci l’aproximació entre la xifra del recompte de nens dins de la zona i la del nombre de places serà més o menys propera, si comptem per illes l’error que es pot cometre és molt més gran que si comptem per parcel·les o portals, ja que a l’incloure o no una illa el nombre d’habitants de la zona canvia molt bruscament.

També hi ha la possibilitat de fer un mapa temàtic de tota aquesta població que queda fora, d’aquesta manera les illes més fosques són les que tenen més nens ‘exclosos’ en la situació actual de les Escoles Bressol Municipals i considerant una cobertura del 100%. Vegeu la figura 5.

Fig 5. Àrees d’Influència de les EB Municipals, amb mapa temàtic per illes de la població exclosa

Es imporant pensar que el que s’ha vist per les Escoles Bressol Municipals, es pot generalitzar a qualsevol grup d’entitats que ofereixin un servei determinat i de les que coneixem la seva capacitat en el servei, per exemple els Centres d’Assistència Primària, els Centres Cívics, les institucions socio-sanitàries, etc.

En un cop d’ull, si mirem per exemple la figura 5 podem saber a quins llocs de la ciutat seria més interessant que hi hagués un nou centre o a on no caldria que n’hi hagués un d’existent. L’eina permet fer simulacions modificant la ubicació i la capacitat d’un centre en concret observant com varien el nombre i distribució de la població no inclosa.

Igualment tot el que s’ha fet per les Àrees d’Influència circulars, a vista d’ocell, es pot fer també per les Àrees d’Influència seguint el Graf de Trams de Carrers, considerant els trajectes del vianants i donant una imatge més real de la capacitat d’accedir a un determinat servei.  Però això ja ho comentarem més endavant.

Segmentació de la Població

 

Tal com vam veure en un ‘post’ anterior sobre les agregacions de la població de la ciutat, utilitzant la base de dades del Padró Municipal d’Habitants es pot localitzar la població segons la Illa de cases on es viu, segons la parcel·la o segons el portal on hi ha el seu domicili.

Aquesta manera de geolocalitzar pot ser molt útil per mesures o consultes en les quals interessi veure on hi ha més gent o on n’hi ha menys. Però, anant més enllà, pot caldre també discernir sobre quin tipus de població hi ha, segons característiques que estiguin reflectides en el Padró, aquestes característiques són: la data de naixement, el gènere, els estudis, el lloc de procedència , la nacionalitat, i totes les  declarades per cada ciutadà a   l’empadronar-se a la ciutat.

Aquestes propietats, juntes, combinades o separades poden determinar segmentacions de la població en cada una de les agregacions per lloc de què parlàvem abans.

En un anterior exemple sobre les Escoles Bressol Municipal, el segment de població que interessava geolocalitzar era el de nens entre 0 i 2 anys. Anem a veure una interfície del plug-in construït en VB per treballar sobre el SIG  GeoMedia que permet fer aquestes segmentacions.

 

Fig 1. Interfície per fer la Segmentació i l’Agregació dels habitants

A la figura 1 podem veure a la pestanya de l’ edat uns camps on indicar el marge inferior i el marge superior de l’edat que estem cercant, i amb dues possibilitats de comptabilitzar-ho,  estrictament si compleix anys a la data indicada, o en sentit ampli, la persona té X anys fins que no en compleixi  X+1. A la part superior del formulari es pot veure el mètode d’agregació que s’utilitzarà que en aquest cas és el de les Illes.

Aquestes dades de franges d’edat es podrien combinar amb el gènere i el nivell d’estudis o qualsevol altre propietat. Per exemple si el segment que cerquem és el d’homes entre 50 i 60 anys que tinguin estudis universitaris a nivell de llicenciatura, s’haurien de posar els paràmetres a les pestanyes corresponents com es pot veure a les figures 2, 3 i 4.

Fig 2: Marge d’edat
Fig 3: Gènere
Fig 4: Estudis

També s’observa a la figura 4, que en el formulari cal marcar tots els criteris pels quals es farà la cerca, abans de generar la taula,  a més a més cal posar els paràmetres corresponents a cada una de les pestanyes que siguin necessaris per a cada cas.

En resum, com a eina necessària en els estudis de població basats en les dades del Padró Municipal d’Habitants, presentem aquest recurs que permet de generar taules per entitats agregades,  escollides segons els segments de població que ens interessin i que permetin les dades, presentant sempre dades agregades i mai personalitzades.

 

WFS: Interactuació amb mapes.

Descripció.

La necessitat de transferir cartografia per Internet ha sigut, i encara és, un problema difícil. La cartografia digital conté un gran volum de dades d’informació, i enviar aquestes quantitats de megabytes per Internet és una tasca pesada, i lenta.

És per això que es va començar a treballar amb WFS, sigles de “Web Feature Service”, que és un servei estàndard que ofereix una interfície que permet sol·licituds de comunicació, permetent interactuar amb mapes WMS (Web Map Service).

A través d’una URL, es pot accedir a les dades cartogràfiques que s’hagin publicat a la taula WFS, i fer consultes específiques, més endavant es mostra un exemple.

Per realitzar aquestes operacions s’utilitza el llenguatge GML, que deriva de XML,  és l’estàndard a través del qual es transmeten les comandes WFS.

Un cop s’ha fet la publicació de la taula WFS i es té la URL que apunta a ella, es poden veure les dades en alguns SIG (Sistemes d’Informació Geogràfica) que permetin el tractament d’aquest tipus de dades, en aquest cas al Geomedia.

En aquest cas, s’ha decidit a utilitzar la taula de trajectes i proximitat a les tres escoles bressol més properes.

Com fer la publicació?

Primerament, des del servidor on està instal·lat el GeoMediaWebMap Professional, s’obre el Server Configuration Utility i es crea un nou servei amb el botó “Add”.

Creació del servei.

El següent pas és seleccionar l’opció Manipulate Feature Web Service.

Es deixen els valors per defecte i es va prement “Next”, s’haurà d’introduir un nom pel WFS.

Nom del servei.

Quan es demani el tipus de base de dades, introduir Microsoft Access. La resta es deixa per defecte, i es finalitza, el servei s’ha creat.

En aquest punt, s’obre el Geomedia i es carrega el mapa que es vol publicar, s’obre el “GeomediaWebMap Publisher Administrator”.

Configurant el Geomedia.

Es selecciona el servei que s’acaba de crear i apareixerà una barra amb botons. Polsar sobre el cinqué botó “PublishandPopulatetheGeoWorkspace”, i seleccionar la primera opció “PublishtheGeoWorkspace contents to theMetaData”. Es selecciona “Sí”.

Botó “settings”.

Es selecciona el segon botó, “settings”. Aquí s’ha de seleccionar l’arxiu .csf que conté el sistema de coordenades. Després es prem l’últim botó per tancar el menú.

En aquest punt només queda inicialitzar el servei, per fer-ho, es torna al Publisher Server Configuration Utility, es selecciona el servei que s’ha creat i es prem “Initialize”.

Servei inicialitzat.

Provar el servei des del navegador introduint l següent línia de comanda:

http://geoportalccu.tecnocampus.cat/ProvaWFS/request.aspx?version=1.1.0&service=wfs&request=getcapabilities

Codi GML creat.

Interpretació gràfica del codi GML.

Veure així el codi no és interessant, el més interessant és veure-ho transformat en un mapa, al Geomedia per exemple, a continuació es veu com es pot configurar el geomedia per tal de veure la informació del servei WFS.

Primerament s’ha de crear una nova connexió, de tipus WFS, en aquest cas s’ha creat de WFS només lectura, per tal de que les dades no es puguin modificar.

Nova connexió.

S’ha d’introduir la URL abans esmentada, i s’accepta.

Un cop creada la connexió, ja es poden mostrar les seves entrades des de la llegenda.

Ventana de mapa del Geomedia amb les dades.