Entrades classificades amb: trajectes

Sobre la Generació de Taules de Proximitat

 

 

En anteriors entrades ja hem parlat del Graf de Trams de Carrer (GTC). El GTC és un conjunt de segments connectats per nodes per on poden circular els vianants de la ciutat per fer els seus trajectes a peu dins de la vila (vegeu l’entrada: ‘Sobre el Graf de Trams de Carrer (GTC) ‘).

També es va veure com mitjançant unes característiques pròpies dels segments del graf podem saber la distància mínima entre un punt qualsevol, normalment una adreça qual­sevol, i un centre proveïdor de servei (CAP, Escola, Centre Cívic etc.), això ens va por­tar al un nou concepte de Zona d’Influència basat en la distància sobre el GTC o en el temps necessari per recórrer aquesta distància (vegeu l’entrada: ‘Nou concepte de Zo­nes d’Influència lligat als desplaçaments de la població’).

El GTC és un graf orientat i d’aquí ve que en els seus segments podem tenir informació del Cost (temps que triga una persona en recórrer el segment anant a una determinada velocitat quan va en el sentit del tram) i Cost_invers (temps que triga quan va en sentit contrari), això també es pot aplicar a una población segmentada segons l’edat, ja que presumiblement la velocitat será diferent per una persona de 25 anys que per una per­sona de 65.

Una de les possibilitats que té el GTC dins del Geomèdia (GM) és la utilització d’eines de rutatge, com el Geomèdia Transportation Mànager (GMTM) que ens permeten, a més a més de generar el propi graf, calcular els camins més curts o òptims segons una determinada funció cost entre dues o més entitats o Classes d’Entitat (taula o conjunt d’entitats del mateix tipus). Una de les característiques del GMTM que es va desenvo­lupar és la possibilitat de generar cobertures a partir d’unes classes d’entitat inicials que ens van facilitar la construcció de l’eina per generar les Zones d’Influència basades en el GTC que ja s’ha descrit.

L’explotació de totes les possibilitats de trobar camins entre entitats a través d’un graf, si no es vol efectuar el càlcul directament en el moment, o si no es disposa dels ele­ments de càlcul ‘on line’, ens porta a la generació de taules amb tots els camins entre les entitats origen i les entitats final, que anomenem ‘Taules de Proximitat’.  Després per obtenir determinats trajectes només haurem de consultar la taula corresponent, sense necessitat de disposar de les eines de rutatge i ni tan sols l’entorn del GM.

Per la creació d’aquestes taules es va construïr un mòdul del GM anomenat ‘Generació de Taules de Proximitat’ que anem a descriure tot seguit [Aquest mòdul formava part del Projecte Final de Carrera de Eric Belando que va presentar el 2011 a la EUPMt per obtenir el Títol d’Enginyer Tècnic Industrial] . El format del Generador de Taules és el d’un formulari on haurem de plasmar les entrades i les opcions d’aquest càlcul, vegeu la figura 1.

Fig 1. Interfície d’usuari per la Generació de Taules de Proximitat

Anem a repassar les tres seccions que es poden veure en aquest formulari

ENTRADES

  • Entitats  ‘origen’ ,des de les quals volem accedir a les entitats proveïdores d’un servei, aquestes poden ser entitats puntuals, com ara els números de policia o portals a peu de carrer, que podem resumir en una adreça determinada tipus Nom de Carrer i Numèro de Carrer. Un altre tipus d’entitats genèriques de la ciutat poden ser les Illes de cases, o també les Parcel·les, en aquest cas serien entitats tipus àrea. Com que per fer el rutatge necessitem una entitat puntual d’origen, en el cas de les entitats tipus àrea s’agafaria el centroide. De totes maneres l’aplicatiu pot funcionar amb qualsevol tipus d’entitat origen, parades de bus, contenidors d’escombreries etc.
  • Entitats ‘destí’, cap a on es dirigeixen els camins que surten de les entitats ori­gen, aquestes entitats serien les que proveeixen d’un servei: Centres d’Assistència Primària, Escoles etc.
  • Graf de Trams de Carrer que utilitzarem. S’han de donar dues classes d’entitat: segments i nusos. El graf ha de tenir informació dels valors de les variables Cost i Cost_invers de cada segment i si es volen calcular taules amb segmentació d’edats hem de tenir aquests mateixos valors de Cost i Cost_invers per a cada segment d’edat. Per això hi ha l’opció d’escollir el GTC que en interessi.

PARÀMETRES

  • S’ha d’indicar si volem generar la taula agafant com a criteri de proximitat la dis­tància (camins de les entitats ‘origen’ fins a les entitats ‘final’ que siguin més curts en distància) o bé el temps  (camins de les entitats ‘origen’ fins a les enti­tats ‘final’ que siguin més curts en temps).

Si hem agafat com a criteri el temps haurem d’escollir si volem segmen­tació per edats o no (si és així el GTC l’ha d’incloure).

  • Nombre d’entitats a les que volem generar camins per ordre de proximitat. Ca­mins a 4 les Escoles Bressol (EB), per exemple, més properes. En aquest cas de cada entitat ‘origen’ hi haurà 4 camins a les 4 EB més properes.
  • Paràmetres interns de la generació de taules. Com ara quina ha la distància mà­xima de les entitats ‘origen’ al GTC per possibilitar el rutatge. O els les agrupa­cions d’entitats que podem fer com a bloc de càlcul.

SORTIDES

  • A quina connexió del GM volem posar les taules que generem com a sortida.
  • Els noms que tenen cada una de les dues taules que generem. Una taula de trajec­tes, o camins, per tant amb geometria de línia. I una taula sense geometria on només posem les dades de la proximitat les entitats ‘final’ per a cada entitat ‘origen’, aquesta proximitat pot ser expressada en metres (distància) o en minuts (temps) segons el mètode que hàgim utilitzat

Aquesta  interfície de la figura 1 correspon a la generació de taules de trajectes i proxi­mitat des de les Illes de Cases de la ciutat de Mataró fins a totes les Llars d’Infants (es­coles bressol privades) de la ciutat. Considerant la unitat de mesura el temps empleat en fer el recorregut , per les les persones de menys de 25 anys. Es considera també que cerquem els trajectes i la proximitat a les dues Llars d’Infants més properes a cada Illa de Cases.

A la part esquerra del formulari tenim les ENTRADES on s’ha d’escollir la classe d’entitat de les entitats ‘origen’ i la classe d’entitat de les entitats ‘destí’ i on també s’ha d’escollir l’atribut identificador de cada entitat. Igualment s’ha de seleccionar les dues classes d’entitat del GTC, els segments i els nodes.

A la part central hi ha els PARÀMETRES de les taules que ja hem comentat.

A la dreta hi ha la configuració de les SORTIDES, connexió escollida d’entre les con­nexions actives del GM, i els noms de les dues taules de sortida que estem generant. També hi ha una retroacció del procés que s’està desenvolupant, una barra de progrés abaix de tot i un ‘log’ de quan s’ha acabat de processar cada una dels blocs d’entitats en que s’ha dividit del procés. En el cas de la figura 1, s’ha escollit blocs de 100 entitats i com que hi ha unes 800 i escaig Illes tindrem unes nou línies en la finestra, indicant per a cada bloc en quin moment s’ha completat. Aquest informació ens pot permetre decidir quin format de bloc és més eficient per a cada procés i cada màquina.

 

Fig 2. Generació de la Taula des de cada portal

A la figura 2 veiem el cas de la generació de les taules de trajectes i proximitat des de cada portal, n’hi ha uns 20000, si s’agafen blocs de 100 es necessiten 200 blocs tal com mostra la finestra de seguiment del procés.

També a la figura 3 es mostra la taula generada,  amb el primer camp D_S_I (districte_secció_illa) que correspon de cada Illa de Cases, el segon camp que es veu correspon a l’entitat d’arribada, que està definida pel nom de la Llar d’Infants corresponent, el camp número 4 correspon al temps definit en minuts que es trigaria en anar des de l’Illa del primer camp a la Llar d’Infants del segon camp, la resta de camps indiquen la geometria o sigui el dibuix del trajecte i només els pot interpretar el GM. Com es pot veure per a cada Illa hi ha dos trajectes, són els dos més ‘curts’ a les Llars d’Infants més ‘properes’.

Fig. 3. Taula de les sortides dels trajectes: TrajectesILLES_LI_25a_2

Aquesta  mateixa informació està indicada en un sol registre, en comptes de dos, en la taula de proximitat, on no hi ha cap ‘geometria’. Vegeu la figura 4 on la primera entitat de destí que es troba és la més propera (en temps)

Fig 4. Taula de les sortides de la proximitat: ProximitatILLES_LI_25a_2

En resum aquest mòdul és molt interessant per tenir una base de dades de trajectes o de proximitat en temps o distància, que es poden utilitzar en la publicació ràpida d’informacions que es puguin cercar a partir de ubicacions sobre el mapa de la ciutat o de llistats de domicilis, o d’adreces amb georeferenciació.   Pot ser molt útil per un recurs web, com ara el el servei WFS, del que es pugui obtenir un o varis camins a partir d’una petició d’una pàgina web on hi hagi una ubicació sobre el mapa de mataró. Només cal que, per que la informació sigui actual, les taules es va­gin generant periòdicament, cosa que s’aconsegueix de forma senzilla utilitzant aquest aplicatiu mostrat.

Aplicatiu per mostrar trajectes a entitats per ordre de proximitat

En anteriors entrades s’ha comentat la possibilitat de visualitzar la proximitat de la població com també d’obtenir els trajectes existents respecte a una entitat destí. En el nostre cas, s’ha vist aplicat precisament a les Escoles de Bressol Municipals.

Per això, i per la importància que suposa disposar de la informació necessària per tal de determinar si un servei es troba a prop del nostre domicili o bé lluny segons les diverses trajectòries obtingudes al destí desitjat i tenint present, en tot moment, les diverses zones d’influència possibles, s’ha desenvolupat l’aplicatiu de “cerca entitat propera”.

Aquest aplicatiu té la mateixa finalitat que l’utilitzat per cercar els camins a les tres Escoles Bressol més properes, però en canvi, ens permet fer la cerca de qualsevol entitat que es desitgi com també mostrar les dades entre un rang de 1-5 noms d’entitat diferents. Per tant, es pot triar el mode de cerca dels valors d’entre 1 i 5 entitats destí.

Figura 1: Aparença de l’aplicatiu de cerca camins a entitats properes.

Tal i com s’observa, l’aparença de l’aplicatiu és el mateix que l’utilitzat en la cerca de camins a les 3 Escoles més properes, amb la diferència d’haver modificat la grandària de la graella (Datagrid) per tal de poder arribar a visualitzar, en condicions, fins a 5 nom d’entitat diversa.

Per tant, com ja s’ha comentat, aquest nou aplicatiu serveix per indicar els trajectes des de qualsevol adreça de la ciutat a una sèrie d’entitats per ordre de proximitat, i no només limitat a les tres entitats més properes. Igualment el propòsit d’aquest mòdul és verificar les taules de proximitat generades pel mòdul generador de taules de proximitat, sense limitació en el tipus d’entitat ni en el nombre d’entitats properes. Tenint present que la verificació de les taules de proximitat ens és de molta utilitat pensant en la seva publicació via WFS tal com ja s’ha comentat a l’entrada al bloc anomenada: WFS Interacció amb mapes.

Aquesta taula de trajectes de proximitat s’haurà de crear amb anterioritat utilitzant el mòdul “càlcul de distàncies mitjançant el graf” en el qual tal i com s’observa a la Figura 2, es tria el camp d’origen (de quina direcció es parteix) i el camp destí (qualsevol entitat). També és possible triar la unitat de mesura que serà precisament l’observada com a resultat de distància o bé cost de l’aplicatiu. Apareixent els diversos filtres a triar, entre els quals pren importància el número d’entitats que seran amb les quals es farà l’estudi a l’aplicatiu en qüestió i les que es mostraran a la graella i mapa de resultats finals.

Figura 2: Aplicatiu de càlcul de distàncies mitjançant el graf.

Un altre aspecte important és el fet d’emmagatzemar la taula resultant de l’execució del mòdul, doncs s’haurà de triar quin serà el destí de la connexió creant tant la taula de trajectes com de proximitat.

I precisament, un cop es disposi d’aquesta taula, en el següent desplegable dins el mòdul creat s’ha de buscar la connexió on es troba emmagatzemada la BBDD que la conté.

Figura 3: Selecció de la BBDD de trajectes

En el present exemple s’ha creat una taula de trajectòries expressament del Veïnat de Mata tenint com a destí tant Escoles Bressol com Llars d’Infants. I triant 5 entitats destí que es visualitzaran a sobre el mapa com en la graella present a la part inferior de l’aplicatiu.

Figura 4: Incorporació de les dades a fer la recerca dins l’aplicatiu.

Un cop ja s’ha introduït el carrer, el número i la BBDD on es troba la taula de trajectes creada prèviament, s’executa l’aplicatiu: “INICI”.

En la següent imatge s’observa com apareixen les 5 entitats més properes, acompanyades de la distància existent entre el número de carrer (Número de portal) fins les 5 entitats de destí més properes. Aquestes es troben ordenades de més proximitat a menys.

Figura 5: Resultats obtinguts en l’execució.

Tal i com s’observa, apareix la columna del nom de l’entitat com també de la Distància/cost. Aquesta última columna indica la distància existent des del número de policia en la qual ens trobem (Veïnat de Mata, 5) fins a cadascuna de les entitats i que es poden trobar mesurades tant en distància, calculada en metres, com també en cost calculat en temps (segons).

En el present cas, el més pròxim a la situació definida (Núm. Portal 05490005x) és la Llar d’infant Snoopy II (3318 m) i en canvi la que es troba més lluny és el Grup d’Escoles Mataró GEM-Primària (3848m).

En la Figura 6 s’observa sobre el mapa quins són els 5 trajectes a les entitats destí. Cadascun marcat amb un color i gruixut diferent depenent de la seva proximitat fent que sigui més fàcil la visualització i entesa.

Figura 6: Visualització sobre el Mapa els camins a les Entitats obtingudes.

La validesa d’aquests trajectes obtinguts farà que es pugui realitzar posteriorment una publicació via WFS de forma satisfactòria i que per tant sigui possible observar la visualització via Internet (interacció amb mapes).

En resum, el fet de disposar d’aquest aplicatiu permetrà realitzar uns estudis més precisos respecte els diversos trajectes obtinguts disposant de més flexibilitat a l’hora de poder triar el número d’entitats destí, com també es podrà afinar en la cerca del recorregut òptim. Aquesta flexibilitat,  s’observa també en el fet de poder mostrar els resultats tant en distància (metres) com en cost (segons) tal i com succeïa en el mòdul de tria de les Escoles Bressol més properes. El fet de fer servir una variable temporal fa que la mesura obtinguda sigui molt més real respecte a la proximitat a cadascuna de les entitats, però en canvi requereix un model de velocitats més detallat i adequat.

Estudi de l’Activitat Econòmica

 

Unes de les aplicacions més sol·licitades dels Sistemes d’Informació Geogràfica (SIG) són les que tenen a veure amb l’anàlisi de l’activitat econòmica (AE), sigui aquesta la corresponent d’una ciutat, d’un territori o d’un país.

De fet la col·locació sobre el terreny de les diferents activitats econòmiques és una informació estratègica de primer ordre, ja que d’una mirada es pot intuir  si d’una determinada activitat, diguem-ne per exemple: restaurants, farmàcies o perruqueries, n’hi ha una concentració exagerada, equilibrada o deficient. Una anàlisi més rigorosa ens permetria saber si d’acord amb la població ‘target’ que hi ha en la seva proximitat i amb els hàbits de mobilitat de la població està justificada o no una determinada oferta en un lloc concret en relació amb la demanda possible. En aquest sentit s’hauria d’anar a esbrinar motivacions sociològiques, moltes vegades difícilment  racionalitzables, per explicar el per què de la presència o no  d’una activitat en una àrea determinada.

De tota manera, una de les motivacions més senzilles de la geolocalització d’activitats econòmiques en un territori, serien les aplicacions anomenades de ‘geo-marketing’, consistents en veure on hi ha ‘buits’ o mancances d’una determinada activitat per impulsar la creació de negocis precisament en aquells indrets.

Un primer punt d’un aplicatiu que respongués a tals característiques seria la ubicació de les activitats econòmiques sobre el mapa de la ciutat, en aquest cas, de la ciutat de Mataró. Aquesta eina per ser útil caldria que oferís la possibilitat de diferents mètodes de cerca de les activitats, sigui pel nom o descripció, sigui pel codi corresponent segons una determinada classificació. També caldria tenir una font de les activitats i un manteniment que permetés afegir amb agilitat les altes i les baixes que es van produint.

Arribats a aquest punt cal dir que el CCU ha treballat i està treballant en la generació d’eines que permetin ubicar les AE sobre el mapa de la ciutat de Mataró, tant pel que fa a parcel·la com a portal.

La font  de la informació de l’AE de Mataró que ha escollit el CCU és la Brossa Comercial (BC). Cada activitat genera un tipus de deixalles específic i això influeix en la tarifa que ha de pagar, i quan es deixi de fer l’activitat el seu titular serà el primer interessat en notificar-ho als responsables de recaptació per deixar de pagar per aquell concepte, per tant la Base de Dades de la Brossa Comercial és una font actualitzada de l’AE a la ciutat. Com a part negativa d’escollir aquesta font hi ha el fet  que l’activitat real que es faci no s’ajusti exactament a la declarada en concepte de deixalles generades.

Respecte al tema de la classificació, en aquest moment s’ha escollit la forma de classificació que la BC utilitza, que és la dels epígrafs de l’antic IAE (Impost sobre l’Activitat Econòmica), amb tendència a anar-ho canviant progressivament cap a la classificació CCAE (Classificació Catalana d’Activitats Econòmiques).

A l’aplicatiu del CCU també es poden visualitzar algunes característiques concretes com ara la superfície de l’activitat i consultar igualment algunes informacions proveïdes per la Base de Dades de la BC. A més a més també es poden consultar d’altres informacions relacionades amb la població que s’aniran explicant tot seguit i que el refermen com a eina analítica a més a més d’informativa.

Anem a concretar una mica tot això. A la figura 1 es pot veure la interfície on hi el cercador on a partir d’un paraula o conjunt de paraules o d’un codi podem anar seleccionant les activitats que es volen mostrar.

Fig 1. Llista d’activitats que podem cercar i seleccionar

Un cop escollida l’activitat, si es tracta de situar els portals on es desenvolupa l’activitat, es pot anar a una altra pestanya per incidir en el tamany del ‘topo’ on es mostra (proporcional a la superfície del local), i fer d’altres mesures relacionades amb la població, com ara definir una zona d’influència(ZI) a l’entorn de la ubicació de cada activitat i mostrar un mapa temàtic de la població que queda fora de aquestes zones d’influència.

Si mirem per exemple les ferreteries, la segona pestanya seria la que mostra la figura 2

Fig 2. Pestanya pes escollir tamany dels ‘topos’ i de la Zona d’Influència i tipus de Z.I

En aquest cas s’ha escollit un factor de forma dels ‘topos’ de 2, àrees d’influència circulars de 150 m de radi i veure el mapa temàtic de la població exclosa. La sortida es mostra a la figura 3 on s’ha fet un zoom sobre el centre urbà de la ciutat i es poden apreciar els indrets de l’activitat, les  ZI circulars i el mapa temàtic de les illes externes a les ZI.

Fig 3. Ferreteries amb ZI de 150 m i temàtic de població exterior

La llegenda corresponent a aquest mapa es mostra a la figura 4:

Fig 4. Llegenda del mapa de ferreteries

En el mapa temàtic de la població, les Illes més fosques corresponen a les de més població i per tant allà on ‘faria més falta’ la instal·lació de noves activitats.

Les ZI es poden escollir també sobre el Graf de Trams de Carrer (GTC), anem a  veure un altre exemple, les farmàcies.

En aquest cas hi ha la possibilitat d’escollir el treballar amb distància o recorregut seguint el GTC o bé amb temps de trajecte, i s’ha triat una zona d’influència de 3 minuts a l’entorn de cada centre d’activitat. La segona pantalla es mostra a la figura 5 i la sortida a la figura 6

Fig 5. Segona pantalla per a les Farmàcies amb ZI-GTC

Fig 6. Sortida de la consulta de Farmàcies amb ZI graf a 3 minuts

En resum la interacció entre la situació de les diferents activitats econòmiques amb la població, segmentada per Illes, permet veure la sobre-presència d’activitats en uns punts de la ciutat així com la no presència en d’altres on hi pot haver potencials usuaris o compradors. També la utilització del graf de trams de carrer graduat per distància o per temps ens dóna una idea molt fidel del concepte de proximitat i ens permet fer un anàlisi més acurat de les necessitats o tendències properes en la instal·lació de noves activitats.

 

 

 

 

 

 

 

Sobre el Graf de Trams de Carrer (GTC)

 

Tal com ja s’ha comentat en aquest bloc quan hem parlat del ‘Nou concepte de Zones d’Influència’, un element bàsic de la modelització dels desplaçaments a la ciutat de Mataró és el Graf de Trams de Carrer (GTC). Aquest graf està format per segments i nodes, cada segment és un tram de carrer (part del carrer entre cruïlles) i els nodes són precisament les cruïlles.

El GTC es pot obtenir de moltes maneres, però en resum hi ha dos orígens bàsics, ad­quirint-lo a una empresa especialitzada (com per exemple Navteq o  TomTom) , on s’inclouran informacions sobre els sentits de circulació en cada via i els girs prohibits i autoritzats en cada nus i moltes altres coses, o bé generant-lo nosaltres mateixos, aquí s’ha optat pel segon cas, més que res per que es vol estudiar més el desplaçament de vianants  que no pas el de vehicles i d’aquesta manera podem afegir i incloure en el GTC trams que no siguin vials de carrer, com ara camins de vianants dins de parcs o zones verdes i recorreguts específics de la gent que va a peu.

Des del punt de vista d’un SIG el GTC està format per un conjunt d’entitats, o classe d’entitat, segons la terminologia del GeoMedia, de tipus lineal, els segments del graf, i un conjunt d’entitats de tipus punt, els nodes. Aquestes entitats lineals han de ser total­ment connexes si es vol navegar al seu través, o sigui, no hi pot haver cap punt de des­connexió o discontinuïtat. També a part de les característiques geomètriques de cada classe d’entitat, línies i punts, cal que hi hagin uns atributs associats a cada element si­gui aquest segment o node.

Quins són aquests atributs?

En primer lloc hi ha d’haver un codi per a cada segment i un codi per a cada node aquests dos codis han d’estar relacionats, és a dir,  dins de cada segment hi ha d’haver informació d’entre quins dos nodes està definit aquell segment en concret, i això per a tots els segments, d’aquesta manera amb aquestes dues llistes la de segments amb els codis dels nodes dels extrems de cada segment i la dels nodes s’estableix la morfologia del graf i es podria calcular una ruta encara que no tinguéssim la imatge geomètrica precisa.

Un altre atribut que podem tenir dins de la taula de segments és sobre l’ orientació o sentit del tram, aquesta orientació és arbitrària i s’agafa en el moment de definir el graf, per tant ens cal saber quin és el node d’origen del tram i quin el node de final del tram, per tant aquests nodes extrems del tram no són qualssevol , un d’ells és des de on parteix el tram i l’altre és a on arriba.

Per la construcció del GTC utilitzem una eina del GeoMedia Transportation Manager que parteix d’una classe d’entitat lineal i ella mateixa et va guiant per acabar obtenint les dues classes d’entitat del graf, els segments i els nodes, automàticament és generen els camps: NodeId en la taula de nodes amb un codi per cada node, i els camps: EdgeId, FromNodeId, ToNodeId en la taula de segments, que ens indiquen el codi de segment, i des de quin node a quin altre node està definit el segment, respectivament. Aquests són els camps principals per la construcció del graf, després n’hi ha uns altres que anirem comentant a continuació. Vegeu a la figura 1 una part dels segments i els nodes del GTC amb els identificadors respectius.

Fig1. Segments i Nodes del GTC amb els codis de EdgeId (vermell) i NodeId (negre)

Si cliquem sobre del tram 1017 obtenim les informacions que es mostren a la figura 2, on es poden comprovar els valors dels atributs EdgeId, FromNodeId i ToNodeId i es pot veure que el tram 1017 efectivament va del node 836 fins al node 837 tal com es veu a la figura 1.

Fig2. Dades del Segment 1017

De la mateixa manera es pot comprovar que hi ha molts altres camps dins dels atributs del tram, fixem-nos de moment en els camps LENGTH i Cost i Cost_invers.

Per què volem el GTC?

Per a dues coses, en primer lloc per a navegar des d’un punt de la ciutat fins a un altre, aquesta navegació ens ha de portar al conjunt de segments concatenats que uneixin el punt inicial amb el punt final segons un determinat criteri d’optimització que podria ser minimitzant la distància o minimitzant alguna altra variable (a la figura 3 es mostren els trajectes a les 3 Escoles Bressol més properes des d’una adreça concreta de la ciutat)  i en segon lloc per desplegar a partir d’un punt el conjunt, ramificat en arbre, de trajectes fins a assolir una determinada distància màxima o un valor màxim d’un altre indicador (vegeu la figura 4)

Fig 3. Trajectes a les 3 Escoles Bressol més properes des d’un punt de la ciutat seguint el GTC. La variable a optimitzar és la distància.

A la figura 4 es pot veure aquesta construcció en arbre, seguin el GTC, a partir de l’entitat: Escola Bressol ‘Les Figueretes’ fins a una distància màxima de 250 m. Com es veu a la figura la progressió fins a assolir els 250 metres pot acabar en un punt entremig del tram.

Fig 4. Arbre corresponent a l’Escola Bressol ‘Les Figueretes’ sobre el GTC (segments i nodes) fins a una distància de 250 m.

Tant en el cas 1, camí o trajecte entre dos punts de la ciutat, com en el cas 2, arbre des­plegat sobre el GTC a partir d’un punt, s’ha utilitzat la distància, el camp LENGTH, de cada segment com a base dels càlculs, això vol dir el camí òptim de distància mínima entre dos punts o el desplegament per la xarxa de trams de carrer fins arribar a fer la distància fixada de 250 m.

Una altra possibilitat seria fer servir una altra variable a minimitzar quan volem definir un camí o a utilitzar quan volem definir un desplegament en arbre, aquesta variable se­ria la que tenim quantificada en els camps Cost i Cost_invers de cada tram. Així com la longitud del tram no depèn de si es recorre en un sentit  o en un altre, en canvi si es tre­balla amb una altra variable, com ara el temps de recorregut del tram, sí que depèn de les característiques específiques de cada tram, com ara el pendent, els obstacles i la ti­pologia (plataforma única, escales, etc.) i en aquest cas té sentit de tenir dos paràmetres per tram, per si es circula en el sentit definit del tram Cost o si es va en sentit contrari Cost_invers. Això pot donar lloc a diferències importants de recorregut o de conjunt de carrers a l’abast si es va de casa a l’Ambulatori o es torna de l’ambulatori, sobretot quan el terreny és accidentat, amb moltes pujades i baixades.

En resum, quan més acurada sigui la informació del GTC, i en concret de cada tram, més es podrà afinar en la cerca de recorreguts òptims i en la definició de les Zones d’Influència a través del graf. De la mateixa manera, la utilització de la variable temps com a funció de cost, ens dona una mesura molt més real de la proximitat o llunyania dels centres proveïdors de serveis al ciutadà però requereix de tenir un bon model de la velocitat en els desplaçaments.

Nou concepte de Zones d’Influència lligat als desplaçaments de la població

 

Tots els Sistemes d’Informació Geogràfica (SIG) tenen el concepte de Zona d’Influència, normalment anomenat ‘buffer’, que consisteix en agafar una classe d’entitat (taula d’entitats) i generar en el seu entorn una àrea que amplia la frontera de les entitats una certa distància i respon a la idea de zona d’influència o zona de proximitat o de veïnatge.

Per tant si la classe d’entitat de la que volem definir el ‘buffer’ és una àrea, tal com hem dit, el seu ‘buffer’ és una altra àrea que comprèn l’entitat i té més o menys la mateixa forma, però si la classe d’entitat és lineal el seu ‘buffer’ és una àrea de tipus rectangular que pot estar arrodonida en els extrems  i si la classe d’entitat és puntual el seu ‘buffer’ és una àrea de tipus circular.

Un paràmetre característic de les zones d’influència és el ‘radi’ o distància, en realitat el concepte més adequat és el de distància ja que ens indica a quina distància de l’entitat base es troba el límit de la seva zona d’influència, però que en el cas d’entitats  puntuals, com que la zona d’influència és circular, sí que coincideix amb el radi d’aquest cercle.

Fig 1: Zones d’Influència sobre les Zones Verdes a una distància de 50 m.

A la figura 1 podem veure un exemple de les zones d’influència sobre entitats tipus àrea, com és el cas de les zones verdes accessibles de la ciutat de Mataró, en aquest cas s’ha considerat una distància fixa de 50 metres. Això podria tenir un sentit de comptar , per exemple, quants ciutadans viuen a menys de 50 metres d’una zona verda.

Un altre cas molt comú d’utilització de les zones d’influència seria veure quants ciutadans estan a més d’una determinada distància d’un centre proveïdor de serveis, com un Centre d’Assistència Primària (CAP) o un centre docent o un centre cívic, en aquest cas són molt útils els ‘buffers’ a l’entorn d’aquestes entitats, que normalment són representades com a entitats puntuals i per tant les seves zones d’influència seran circulars. Això ho podem veure a la figura 2 pel cas d’Escoles Bressol Municipals de la ciutat de Mataró.

Fig 2: Zones d’Influència a l’entorn de Escoles Bressol Municipals a 250 m

En aquesta figura es veuen els típics cercles que corresponen a les zones d’influència de les entitats puntuals i que podrien servir, tal com hem dit, per veure quanta població està a menys de 250 metres d’una Escola Bressol Municipal i quanta a més, per exemple.

Aquesta característica de dibuixar ‘buffers’ a l’entorn d’entitats és molt utilitzada en SIG quan es volen fer operacions espacials, com ara unió, intersecció, combinacions analítiques, agregacions etc. En el cas de les Escoles Bressol, es pot fer una agregació de tota la població (o dels infants entre 0 i 2 anys) que hi ha  dins de cada zona d’influència a partir de les dades que tenim prèviament agrupades per Illes de cases, parcel·les o portals, tal com s’ha descrit en un altre ‘post’ en aquest mateix bloc, indicant que es sumen tots els habitants que pertanyen a les entitats (siguin aquestes Illes, parcel·les o portals) que estan contingudes dins de la zona d’influència corresponent.

De totes maneres, en totes les operacions que tenen a veure amb la població i amb els seus desplaçaments per la ciutat, aquesta mesura de la proximitat directe que ens proporciona el ‘buffer’ dels SIG no sempre ens és útil, ja que si volem dir ‘nens que hi ha a menys de 250 m de l’Escola Bressol’ aquest concepte de ‘buffer’ ens mostra els nens que viuen  a menys de 250 m, però en línia recta, ja que és el radi de la zona d’influència. El que seria més real seria indicar els nens que hi ha a 250 m seguint la xarxa de carrers, comptant que els nens aniran a l’escola circulant pel carrer. També seria útil considerar en comptes de distància, el seu equivalent en temps, nens que hi ha a menys de 5 minuts del centre, i en aquest cas tenint en compte les facilitats o inconvenients que presenten els carrers, pendents, obstacles ,escales etc.

Això ens ha de portar a definir una nova zona d’influència lligada a la xarxa de trams de carrer (anomenem tram el segment de carrer entre cruïlla i cruïlla). En primer lloc considerarem la xarxa com a una entitat lineal arborescent que creix a partir de l’entitat puntual origen (en aquest cas serien les Escoles Bressol). Vegeu la figura 3

Fig 3. Graf de Trams de Carrer a partir de les Escoles Bressol fins a 250 m de distància

Efectivament  a la figura es poden veure els recorreguts a partir de l’entitat origen que faria un vianant anant en qualsevol direcció (sense passar dues vegades pel mateix lloc) i recorrent un màxim de 250 metres. Com es pot veure els possibles recorreguts depenen de la morfologia de la xarxa de carrers en cada lloc de la ciutat, a part de la pròpia distància a recòrrer. En aquest cas el sentit de distància és molt més real que considerant les zones d’influència clàssiques amb distància a vista d’ocell.

Com que volem tenir una zona d’influència amb les mateixes característiques que la definida de forma clàssica, hem de convertir aquest conjunt de trams en un àrea, agafant precisament un ‘buffer’ sobre aquesta entitat lineal (abans hem hagut de convertir el conjunt de trams en una entitat lineal única)

Fig 4. Zones d’Influència sobre el Graf de Trams de Carrer, distància 250 m

A la figura 4 es pot veure l’efecte d’agafar un ‘buffer’ sobre cada conjunt de trams desplegats a 250 m de la seva entitat origen. Aquest ‘buffer’ s’agafa a 20 m de les línies del graf de trams.

D’aquesta manera es poden continuar aplicant les operacions espacials que ens calguin pels nostres càlculs com si fossin àrees circulars, però amb l’avantatge d’uns resultats molt més realistes quan treballem amb població i distàncies.

 

Una altra cara de la mateixa moneda. Comptar entitats properes

Hem vist en el ‘post’ anterior d’aquesta secció com podem visualitzar la proximitat de la població a un centre de serveis utilitzant el recurs dels mapes de colors o mapes temàtics, ho hem vist aplicat a les Escoles Bressol Municipals.

Una altra manera de posar de manifest si un determinat servei està a prop del teu domicili o està més lluny, seria comptant quants centres proveïdors d’aquest servei tens com a màxim a una determinada distància, per exemple a menys de 200 metres de casa teva, en aquest cas la informació és un pel diferent, ja que també dóna una idea de saturació, o de possibilitats d’escollir, que conformen una altra categoria, de qualitat d’atenció.

En resum podem saber si estem a prop d’una determinada Escola Bressol si la nostra illa està pintada en un to de gris molt clar o també podem saber si tenim una, dues, tres o cap Escoles Bressol a una determinada distància de la nostra illa de cases.

Aquesta gradació de cap, una, dues, tres etc. es pot mostrar també en forma de mapa temàtic on cada color representa, no un rang, com fèiem en el cas de les distàncies sinó un nombre d’entitats properes.

Tornem a un exemple:

Compta les Escoles Bressol a menys de 400 de cada illa de cases

Aquí es veuen les Illes que tenen una Escola Bressol a menys de 400 m de distància (gris clar) les que en tenen dues (gris fosc) i les que no en tenen cap a menys de 400 m (blanc)

També podem fer un temàtic de la població de nens entre zero i dos anys que viuen en illes que estan a més de 400m de qualsevol Escola Bressol

En groc la població de les illes que estan a ms de 400 m de cada illa de cases

Les illes en groc més fosc corresponen a les que tenen un nombre més gran de nens entre zero i dos anys que haurien de desplaçarse més distància per anar a un centre. Això està fet pel cas de 400 m però ho podríem fer per a qualsevol distància.

Altres exemples d’aplicació d’aquesta mesura de quantitat de centres proveïdors de servei que tenim a una determinada distància màxima ho podem aplicar a les parades d’autobús, de taxi, de contenidors d’envasos de vidre etc.

Mirem ara un exemple aplicat a les Zones Verdes Accessible, podem mesurar quantes Zones Verdes Accessible tenim a prop, i a on viu més gent en les illes mes allunyades

Tematic de nombre de Zones Verdes Accessibles a menys de 100 de cada illa de cases i de la població exclosa

A la llegenda podem veure els dos temàtics: en tons de gris els que indiquen el nombre de Zones Verdes Accessibles a menys de 100 m de la nostra illa de cases i en tons de groc els habitants, en general, que viuen en cada illa per rangs equivalent.

Llegenda dels dos temàtics, el de la població que queda fora i els de les entitats a menys de 100 m de distància

Per tant visualment s’obtè informació del punts més faltats i també dels punts més ben situats des d’aquest punt de vista. Aquesta informació en matisa la que obteníem nomes de la proximitat. També veiem que podem fer dues menes de mapes temàtics, quan es tracta de variables contínues, en aquest cas es fan intervals o rangs i quan es tracta de variables discretes on hi ha un color per a cada valor.

Primera entrada al bloc: Una mica d’història

 

La nostra idea és que amb les entrades que es vagin fent en aquest bloc anem donant a conèixer tota la feina que s’ha dut a terme  dins del grup de treball ‘Centre de Coneixement Urbà’ des de fa quasi deu anys.

I una forma de fer palesa aquesta progressió és intentar reproduir aquí d’una forma quasi cronològica, les idees i els temes que hem anat desenvolupant al llarg del temps, estalviant-nos ,és clar, les anades i vingudes típiques de qualsevol procés creatiu i científic.

Tot va sorgir per unes ‘Jornades de Coneixement Urbà’ que es van fer a la EUPMt adreçades, l’any 2003, als ajuntaments i organismes públics. Aquestes entitats per la seva pròpia naturalesa han de treballar amb gran quantitat de dades sobre el territori, que per aquesta mateixa raó han d’estar perfectament geolocalitzades, aquest és un terme gairebé nou aleshores, però que amb els anys ens ha resultat familiar a tots, primer amb el desenvolupament i generalització dels receptors de GPS i després amb l’eclosió dels telèfons mòbils diguem-ne intel·ligents.

Per tant ja tenim un punt, la posició precisa en un lloc d’un element, sigui aquest una escola, una parada d’autobús , una cruïlla, un banc o un restaurant,  i aquesta situació la podem veure dins d’un model del territori com seria un plànol de més o menys detall, o d’una imatge de la realitat com seria una fotografia aèria posem pel cas.

Tenim també unes eines informàtiques que treballen amb aquestes  representacions  d’objectes que volen ser models d’una realitat ciutadana o territorial, aquestes eines són els Sistemes d’Informació Geogràfica (SIG) que a més a més de representar (dibuixar) ens permeten emmagatzemar  informació sobre els objectes que anem ubicant, això és un gran pas respecte al sistema clàssic de plànols sobre paper, on necessariament la informació ha de ser limitada. Per tant a més a més de la posició (coordenades)  d’una parada d’autobús podem tenir coneixement de les línies que hi passen , la periodicitat, els horaris, la data de construcció, si està coberta o no, la mitjana de viatgers etc, qualsevol dada que considerem rellevant podrà estar associada a un punt, una línia o una àrea ubicades en una situació concreta.

Malgrat tot, malgrat ser una eina molt poderosa la que tenim amb els SIG, ens cal anar més enllà de la representació d’entitats i dades associades amb una localització geogràfica concreta. Pensem que tenir tota la xarxa de canonades d’aigua i clavegueram, per exemple, amb els seus dipòsits, bombes i vàlvules és summament important de cara a tenir al dia la base de dades del que hi ha en cada moment a la xarxa i del seu estat de funcionament, però ja us dic, nosaltres volíem anar més enllà de la informació precisa i ordenada sobre el territori.

Precisament aquesta mateixa localització de la informació ens permet extreure una altra informació, diguem-ne de segon nivell, que ja representa un avenç sobre la mera ubicació de les dades. Ens anem acostant a un dels primers exemples que ens van permetre intuir la potència d’aquests recursos informàtics si els sabíem treballar adequadament, els de les Escoles Bressol.

Vam començar amb les Escoles Bressol Municipals de Mataró i és un tema que hem continuat treballant al llarg del temps. Podem ubicar les Escoles Bressol sobre un plànol de la ciutat i podem veure si tenen una distribució uniforme, si qualsevol ciutadà te un centre a una distància no gaire gran del seu domicili o si per al contrari  hi ha zones molt desproveïdes d’aquest servei.  Ens  sembla que  podem copsar tot això amb la simple visió del seu emplaçament, i en part és veritat i aquesta és la base de la ‘gran millora’ que representa la informació visual respecte a la informació només alfanumèrica, i d’això ens aprofitarem en les nostres anàlisis futures. Però veurem que encara podem incrementar més el coneixement del tema de les distàncies  i la cobertura amb l’ajuda del recursos del SIG.

Bé, ja va siguent hora de començar a veure algunes imatges. En la propera figura veiem les Escoles Bressol com a punts sobre el plànol de la ciutat representada simbòlicament com a un conjunt de illes de cases, això ens permet veure també el carrers. La informació en aquest sentit és clara, i si cliquem damunt del punts que representen les escoles obtenim la informació rellevant que tenim sobre aquella escola en particular.

Escoles Bressol Municipals sobre el conjunt de Illes de Mataró

Un canvi important en la informació que s’ofereix a l’usuari és quan veiem un mapa temàtic, mapa de colors, on cada color representa una determinada distància des de cada illa de cases a l’Escola Bressol més propera, això és el que mostra la següent figura:

Mapa temàtic de les distàncies de cada Illa a l’Escola Bressol més propera

Això ja és una informació més elaborada. Aquí ja es veuen les illes de cases que estan més properes a alguna escola en una gradació de gris més clar a més fosc, el darrer rang, les illes més allunyades resten en blanc. Això d’un cop de vista ens dóna molta informació sobre els llocs de la ciutat on és més fàcil accedir a una Escola Bressol Municipal i on no ho és tant.

Cal dir que fins ara la informació ha estat només de tipus geomètric, és a dir, només basada en la distribució dels objectes, Escoles Bressol i illes, però encara podem anar més enllà i saber dels llocs més allunyats on hi ha més concentració de gent.

En aquest cas la gradació de colors és de tons de groc, com més foscos més gent. Parlant de gent, en aquest cas no són només habitants sinó que són possibles usuaris del servei de les Escoles Bressol, ho sigui nens entre 0 i 2 anys.

Mapa temàtic de distàncies a les Escoles Bressol (gris) i de població en el rang mes allunyat (groc)

Pensem en la quantitat d’informació que ens dóna una sola imatge i les possibilitats que te la seva explotació en la gestió i la presa de decisions. Això és el que ens va motivar a continuar aprofundint en el tema mitjaçant la creació del CCU.