Relació entre la capacitat d’un centre proveïdor de serveis i la seva àrea d’influència

Relació entre la capacitat d’un centre proveïdor de serveis i la seva àrea d’influència

 

Ja s’ha vist, en aquest mateix Bloc, com associar la població amb el territori, sabem que pot quedar associada a les Illes, parcel·les i els portals de la ciutat, i també s’ha vist com segmentar aquesta mateixa població segons determinats criteris, franja d’edat, estudis, procedència geogràfica, nacionalitat etc.

Ara anem a explicar com donat un determinat centre proveïdor d’un servei, per exemple un centre educatiu,  podem delimitar una zona del territori immediatament proper, de manera que ‘casin’ la capacitat del centre per una part i la població ‘target’ d’aquest zona propera per altra.

No cal dir que la vista del territori estudiat, en aquest cas la ciutat de Mataró, amb els centres proveïdors  del servei i les respectives àrees properes d’influència, pot donar una imatge, al menys teòrica, de la cobertura o no cobertura de les necessitats del global de la població en el servei objecte d’estudi.

Des d’un punt de vista tecnològic, és a dir, de les eines que ens poden permetre obtenir aquesta representació gràfica, un SIG (Sistema d’Informació Geogràfica) per sí mateix no ens permet obtenir-ho d’una forma fàcil i immediata. Per tant hem hagut d’anar a les funcionalitats base del nostre SIG, en aquest cas el GeoMedia, per generar un procés iteratiu i convergent de modificació de la zona d’influència fins que el nombre d’habitants continguts a la zona, coincideixi amb la capacitat de servei del centre estudiat.

Anem a veure-ho per un cas concret que coneixem. Suposem que volem estudiar la implantació de les Escoles Bressol Municipal a la ciutat de Mataró, recordem la situació dels centres en la figura 1.

Fig 1. Situació de les Escoles Bressol Municipals a la ciutat de Mataró.

Ja que els usuaris de les Escoles Bressol són nens entre 0 i 2 anys, el que s’ha de fer és preparar una segmentació de la població total que només tingui en compte aquesta franja d’edat, i també s’ha d’escollir si ho agreguem per Illes, parcel·les o portals. Utilitzarem el recurs basat en Visual Basic que ja vam explicar, la interfície seria la de la figura 2.

Fig 2. Escollim els habitants entre 0 i 2 anys agrupats per Illes.

Això vol dir exactament que tenim associat a cada illa de cases el nombre de nens entre 0 i 2 anys que hi ha empadronats en algun habitatge de l’illa. Ens cal també tenir associat a cada entitat Escola Bressol el nombre màxim de nens que pot acollir. A partir d’aquestes dues dades podem iniciar el procés de càlcul pròpiament dit. Cal tenir en compte que l’àrea d’influència resultant serà, probablement, diferent per a cada entitat ja que dependrà tant de la capacitat del centre com de la densitat que hi hagi a les illes del voltant de cada centre de nens entre 0 i 2 anys.

Fixem-nos en la interfície de càlcul de les Àrees d’Influència de la figura 3, aquí podem veure el formulari que s’ha d’omplir per iniciar el càlcul.

Fig 3. Interfície per generar les Àrees d’Influència

Els camps més importants són:

Tipus d’agregació: ILLES [podrien ser també Parcel·les o Portals]
Entitat Base: Escoles Bressol [a partir de les quals generem les Àrees d’Influència]
Paràmetre del Radi Incial: 400 [valor associal al radi de les Zones d’Influència incials]
Cobertura: 100% [si volem que Tota la població del rang tingui Escola Bressol, o només una part, en aquest cas aquest valor seria de menys del 100%]
Possibilitat de comptar els habitants que no estàn a cap zona: Sí
Possibilitat de fer un mapa temàtic de la població no inclosa: No
Treballar per Trams: No [Possibilitat d’agafar Zones d’Influència Circulars o a partir del Graf de Trams de Carrer]

Si premem el botó de ‘Calcular l’Àrea d’Influència’ obtenim el que surt a la figura 4.

Fig4. Àrees d’Influència de les EB Municipals

A l’anterior figura es pot veure l’Àrea d’Influència de cada Escola Bressol Muncipal on s’ha aproximat la població entre 0 i 2 anys de cada zona i la disponibilitat de places de cada centre. Encara que no es vegi a la figura 4, s’ha calculat igualment el  nombre de nens d’aquestes edats que queda fora del conjunt d’àrees, que és per a tota la ciutat de 1972. Cal pensar també que segons la mena d’agregació que es faci l’aproximació entre la xifra del recompte de nens dins de la zona i la del nombre de places serà més o menys propera, si comptem per illes l’error que es pot cometre és molt més gran que si comptem per parcel·les o portals, ja que a l’incloure o no una illa el nombre d’habitants de la zona canvia molt bruscament.

També hi ha la possibilitat de fer un mapa temàtic de tota aquesta població que queda fora, d’aquesta manera les illes més fosques són les que tenen més nens ‘exclosos’ en la situació actual de les Escoles Bressol Municipals i considerant una cobertura del 100%. Vegeu la figura 5.

Fig 5. Àrees d’Influència de les EB Municipals, amb mapa temàtic per illes de la població exclosa

Es imporant pensar que el que s’ha vist per les Escoles Bressol Municipals, es pot generalitzar a qualsevol grup d’entitats que ofereixin un servei determinat i de les que coneixem la seva capacitat en el servei, per exemple els Centres d’Assistència Primària, els Centres Cívics, les institucions socio-sanitàries, etc.

En un cop d’ull, si mirem per exemple la figura 5 podem saber a quins llocs de la ciutat seria més interessant que hi hagués un nou centre o a on no caldria que n’hi hagués un d’existent. L’eina permet fer simulacions modificant la ubicació i la capacitat d’un centre en concret observant com varien el nombre i distribució de la població no inclosa.

Igualment tot el que s’ha fet per les Àrees d’Influència circulars, a vista d’ocell, es pot fer també per les Àrees d’Influència seguint el Graf de Trams de Carrers, considerant els trajectes del vianants i donant una imatge més real de la capacitat d’accedir a un determinat servei.  Però això ja ho comentarem més endavant.

Nou concepte de Zones d’Influència lligat als desplaçaments de la població

Nou concepte de Zones d’Influència lligat als desplaçaments de la població

 

Tots els Sistemes d’Informació Geogràfica (SIG) tenen el concepte de Zona d’Influència, normalment anomenat ‘buffer’, que consisteix en agafar una classe d’entitat (taula d’entitats) i generar en el seu entorn una àrea que amplia la frontera de les entitats una certa distància i respon a la idea de zona d’influència o zona de proximitat o de veïnatge.

Per tant si la classe d’entitat de la que volem definir el ‘buffer’ és una àrea, tal com hem dit, el seu ‘buffer’ és una altra àrea que comprèn l’entitat i té més o menys la mateixa forma, però si la classe d’entitat és lineal el seu ‘buffer’ és una àrea de tipus rectangular que pot estar arrodonida en els extrems  i si la classe d’entitat és puntual el seu ‘buffer’ és una àrea de tipus circular.

Un paràmetre característic de les zones d’influència és el ‘radi’ o distància, en realitat el concepte més adequat és el de distància ja que ens indica a quina distància de l’entitat base es troba el límit de la seva zona d’influència, però que en el cas d’entitats  puntuals, com que la zona d’influència és circular, sí que coincideix amb el radi d’aquest cercle.

Fig 1: Zones d’Influència sobre les Zones Verdes a una distància de 50 m.

A la figura 1 podem veure un exemple de les zones d’influència sobre entitats tipus àrea, com és el cas de les zones verdes accessibles de la ciutat de Mataró, en aquest cas s’ha considerat una distància fixa de 50 metres. Això podria tenir un sentit de comptar , per exemple, quants ciutadans viuen a menys de 50 metres d’una zona verda.

Un altre cas molt comú d’utilització de les zones d’influència seria veure quants ciutadans estan a més d’una determinada distància d’un centre proveïdor de serveis, com un Centre d’Assistència Primària (CAP) o un centre docent o un centre cívic, en aquest cas són molt útils els ‘buffers’ a l’entorn d’aquestes entitats, que normalment són representades com a entitats puntuals i per tant les seves zones d’influència seran circulars. Això ho podem veure a la figura 2 pel cas d’Escoles Bressol Municipals de la ciutat de Mataró.

Fig 2: Zones d’Influència a l’entorn de Escoles Bressol Municipals a 250 m

En aquesta figura es veuen els típics cercles que corresponen a les zones d’influència de les entitats puntuals i que podrien servir, tal com hem dit, per veure quanta població està a menys de 250 metres d’una Escola Bressol Municipal i quanta a més, per exemple.

Aquesta característica de dibuixar ‘buffers’ a l’entorn d’entitats és molt utilitzada en SIG quan es volen fer operacions espacials, com ara unió, intersecció, combinacions analítiques, agregacions etc. En el cas de les Escoles Bressol, es pot fer una agregació de tota la població (o dels infants entre 0 i 2 anys) que hi ha  dins de cada zona d’influència a partir de les dades que tenim prèviament agrupades per Illes de cases, parcel·les o portals, tal com s’ha descrit en un altre ‘post’ en aquest mateix bloc, indicant que es sumen tots els habitants que pertanyen a les entitats (siguin aquestes Illes, parcel·les o portals) que estan contingudes dins de la zona d’influència corresponent.

De totes maneres, en totes les operacions que tenen a veure amb la població i amb els seus desplaçaments per la ciutat, aquesta mesura de la proximitat directe que ens proporciona el ‘buffer’ dels SIG no sempre ens és útil, ja que si volem dir ‘nens que hi ha a menys de 250 m de l’Escola Bressol’ aquest concepte de ‘buffer’ ens mostra els nens que viuen  a menys de 250 m, però en línia recta, ja que és el radi de la zona d’influència. El que seria més real seria indicar els nens que hi ha a 250 m seguint la xarxa de carrers, comptant que els nens aniran a l’escola circulant pel carrer. També seria útil considerar en comptes de distància, el seu equivalent en temps, nens que hi ha a menys de 5 minuts del centre, i en aquest cas tenint en compte les facilitats o inconvenients que presenten els carrers, pendents, obstacles ,escales etc.

Això ens ha de portar a definir una nova zona d’influència lligada a la xarxa de trams de carrer (anomenem tram el segment de carrer entre cruïlla i cruïlla). En primer lloc considerarem la xarxa com a una entitat lineal arborescent que creix a partir de l’entitat puntual origen (en aquest cas serien les Escoles Bressol). Vegeu la figura 3

Fig 3. Graf de Trams de Carrer a partir de les Escoles Bressol fins a 250 m de distància

Efectivament  a la figura es poden veure els recorreguts a partir de l’entitat origen que faria un vianant anant en qualsevol direcció (sense passar dues vegades pel mateix lloc) i recorrent un màxim de 250 metres. Com es pot veure els possibles recorreguts depenen de la morfologia de la xarxa de carrers en cada lloc de la ciutat, a part de la pròpia distància a recòrrer. En aquest cas el sentit de distància és molt més real que considerant les zones d’influència clàssiques amb distància a vista d’ocell.

Com que volem tenir una zona d’influència amb les mateixes característiques que la definida de forma clàssica, hem de convertir aquest conjunt de trams en un àrea, agafant precisament un ‘buffer’ sobre aquesta entitat lineal (abans hem hagut de convertir el conjunt de trams en una entitat lineal única)

Fig 4. Zones d’Influència sobre el Graf de Trams de Carrer, distància 250 m

A la figura 4 es pot veure l’efecte d’agafar un ‘buffer’ sobre cada conjunt de trams desplegats a 250 m de la seva entitat origen. Aquest ‘buffer’ s’agafa a 20 m de les línies del graf de trams.

D’aquesta manera es poden continuar aplicant les operacions espacials que ens calguin pels nostres càlculs com si fossin àrees circulars, però amb l’avantatge d’uns resultats molt més realistes quan treballem amb població i distàncies.

 

Una altra cara de la mateixa moneda. Comptar entitats properes

Una altra cara de la mateixa moneda. Comptar entitats properes

Hem vist en el ‘post’ anterior d’aquesta secció com podem visualitzar la proximitat de la població a un centre de serveis utilitzant el recurs dels mapes de colors o mapes temàtics, ho hem vist aplicat a les Escoles Bressol Municipals.

Una altra manera de posar de manifest si un determinat servei està a prop del teu domicili o està més lluny, seria comptant quants centres proveïdors d’aquest servei tens com a màxim a una determinada distància, per exemple a menys de 200 metres de casa teva, en aquest cas la informació és un pel diferent, ja que també dóna una idea de saturació, o de possibilitats d’escollir, que conformen una altra categoria, de qualitat d’atenció.

En resum podem saber si estem a prop d’una determinada Escola Bressol si la nostra illa està pintada en un to de gris molt clar o també podem saber si tenim una, dues, tres o cap Escoles Bressol a una determinada distància de la nostra illa de cases.

Aquesta gradació de cap, una, dues, tres etc. es pot mostrar també en forma de mapa temàtic on cada color representa, no un rang, com fèiem en el cas de les distàncies sinó un nombre d’entitats properes.

Tornem a un exemple:

Compta les Escoles Bressol a menys de 400 de cada illa de cases

Aquí es veuen les Illes que tenen una Escola Bressol a menys de 400 m de distància (gris clar) les que en tenen dues (gris fosc) i les que no en tenen cap a menys de 400 m (blanc)

També podem fer un temàtic de la població de nens entre zero i dos anys que viuen en illes que estan a més de 400m de qualsevol Escola Bressol

En groc la població de les illes que estan a ms de 400 m de cada illa de cases

Les illes en groc més fosc corresponen a les que tenen un nombre més gran de nens entre zero i dos anys que haurien de desplaçarse més distància per anar a un centre. Això està fet pel cas de 400 m però ho podríem fer per a qualsevol distància.

Altres exemples d’aplicació d’aquesta mesura de quantitat de centres proveïdors de servei que tenim a una determinada distància màxima ho podem aplicar a les parades d’autobús, de taxi, de contenidors d’envasos de vidre etc.

Mirem ara un exemple aplicat a les Zones Verdes Accessible, podem mesurar quantes Zones Verdes Accessible tenim a prop, i a on viu més gent en les illes mes allunyades

Tematic de nombre de Zones Verdes Accessibles a menys de 100 de cada illa de cases i de la població exclosa

A la llegenda podem veure els dos temàtics: en tons de gris els que indiquen el nombre de Zones Verdes Accessibles a menys de 100 m de la nostra illa de cases i en tons de groc els habitants, en general, que viuen en cada illa per rangs equivalent.

Llegenda dels dos temàtics, el de la població que queda fora i els de les entitats a menys de 100 m de distància

Per tant visualment s’obtè informació del punts més faltats i també dels punts més ben situats des d’aquest punt de vista. Aquesta informació en matisa la que obteníem nomes de la proximitat. També veiem que podem fer dues menes de mapes temàtics, quan es tracta de variables contínues, en aquest cas es fan intervals o rangs i quan es tracta de variables discretes on hi ha un color per a cada valor.

Primera entrada al bloc: Una mica d’història

Primera entrada al bloc: Una mica d’història

 

La nostra idea és que amb les entrades que es vagin fent en aquest bloc anem donant a conèixer tota la feina que s’ha dut a terme  dins del grup de treball ‘Centre de Coneixement Urbà’ des de fa quasi deu anys.

I una forma de fer palesa aquesta progressió és intentar reproduir aquí d’una forma quasi cronològica, les idees i els temes que hem anat desenvolupant al llarg del temps, estalviant-nos ,és clar, les anades i vingudes típiques de qualsevol procés creatiu i científic.

Tot va sorgir per unes ‘Jornades de Coneixement Urbà’ que es van fer a la EUPMt adreçades, l’any 2003, als ajuntaments i organismes públics. Aquestes entitats per la seva pròpia naturalesa han de treballar amb gran quantitat de dades sobre el territori, que per aquesta mateixa raó han d’estar perfectament geolocalitzades, aquest és un terme gairebé nou aleshores, però que amb els anys ens ha resultat familiar a tots, primer amb el desenvolupament i generalització dels receptors de GPS i després amb l’eclosió dels telèfons mòbils diguem-ne intel·ligents.

Per tant ja tenim un punt, la posició precisa en un lloc d’un element, sigui aquest una escola, una parada d’autobús , una cruïlla, un banc o un restaurant,  i aquesta situació la podem veure dins d’un model del territori com seria un plànol de més o menys detall, o d’una imatge de la realitat com seria una fotografia aèria posem pel cas.

Tenim també unes eines informàtiques que treballen amb aquestes  representacions  d’objectes que volen ser models d’una realitat ciutadana o territorial, aquestes eines són els Sistemes d’Informació Geogràfica (SIG) que a més a més de representar (dibuixar) ens permeten emmagatzemar  informació sobre els objectes que anem ubicant, això és un gran pas respecte al sistema clàssic de plànols sobre paper, on necessariament la informació ha de ser limitada. Per tant a més a més de la posició (coordenades)  d’una parada d’autobús podem tenir coneixement de les línies que hi passen , la periodicitat, els horaris, la data de construcció, si està coberta o no, la mitjana de viatgers etc, qualsevol dada que considerem rellevant podrà estar associada a un punt, una línia o una àrea ubicades en una situació concreta.

Malgrat tot, malgrat ser una eina molt poderosa la que tenim amb els SIG, ens cal anar més enllà de la representació d’entitats i dades associades amb una localització geogràfica concreta. Pensem que tenir tota la xarxa de canonades d’aigua i clavegueram, per exemple, amb els seus dipòsits, bombes i vàlvules és summament important de cara a tenir al dia la base de dades del que hi ha en cada moment a la xarxa i del seu estat de funcionament, però ja us dic, nosaltres volíem anar més enllà de la informació precisa i ordenada sobre el territori.

Precisament aquesta mateixa localització de la informació ens permet extreure una altra informació, diguem-ne de segon nivell, que ja representa un avenç sobre la mera ubicació de les dades. Ens anem acostant a un dels primers exemples que ens van permetre intuir la potència d’aquests recursos informàtics si els sabíem treballar adequadament, els de les Escoles Bressol.

Vam començar amb les Escoles Bressol Municipals de Mataró i és un tema que hem continuat treballant al llarg del temps. Podem ubicar les Escoles Bressol sobre un plànol de la ciutat i podem veure si tenen una distribució uniforme, si qualsevol ciutadà te un centre a una distància no gaire gran del seu domicili o si per al contrari  hi ha zones molt desproveïdes d’aquest servei.  Ens  sembla que  podem copsar tot això amb la simple visió del seu emplaçament, i en part és veritat i aquesta és la base de la ‘gran millora’ que representa la informació visual respecte a la informació només alfanumèrica, i d’això ens aprofitarem en les nostres anàlisis futures. Però veurem que encara podem incrementar més el coneixement del tema de les distàncies  i la cobertura amb l’ajuda del recursos del SIG.

Bé, ja va siguent hora de començar a veure algunes imatges. En la propera figura veiem les Escoles Bressol com a punts sobre el plànol de la ciutat representada simbòlicament com a un conjunt de illes de cases, això ens permet veure també el carrers. La informació en aquest sentit és clara, i si cliquem damunt del punts que representen les escoles obtenim la informació rellevant que tenim sobre aquella escola en particular.

Escoles Bressol Municipals sobre el conjunt de Illes de Mataró

Un canvi important en la informació que s’ofereix a l’usuari és quan veiem un mapa temàtic, mapa de colors, on cada color representa una determinada distància des de cada illa de cases a l’Escola Bressol més propera, això és el que mostra la següent figura:

Mapa temàtic de les distàncies de cada Illa a l’Escola Bressol més propera

Això ja és una informació més elaborada. Aquí ja es veuen les illes de cases que estan més properes a alguna escola en una gradació de gris més clar a més fosc, el darrer rang, les illes més allunyades resten en blanc. Això d’un cop de vista ens dóna molta informació sobre els llocs de la ciutat on és més fàcil accedir a una Escola Bressol Municipal i on no ho és tant.

Cal dir que fins ara la informació ha estat només de tipus geomètric, és a dir, només basada en la distribució dels objectes, Escoles Bressol i illes, però encara podem anar més enllà i saber dels llocs més allunyats on hi ha més concentració de gent.

En aquest cas la gradació de colors és de tons de groc, com més foscos més gent. Parlant de gent, en aquest cas no són només habitants sinó que són possibles usuaris del servei de les Escoles Bressol, ho sigui nens entre 0 i 2 anys.

Mapa temàtic de distàncies a les Escoles Bressol (gris) i de població en el rang mes allunyat (groc)

Pensem en la quantitat d’informació que ens dóna una sola imatge i les possibilitats que te la seva explotació en la gestió i la presa de decisions. Això és el que ens va motivar a continuar aprofundint en el tema mitjaçant la creació del CCU.